
Computer Architecture

ca3a.docx VZ6.3 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 1.1

Software Architecture of Microprocessors and Microcontrollers

Chapter 1 Overview

Chapter 2 Architecture of a typical Microcontroller: Freescale HCS12

Chapter 3 Peripherals, Input/Output, Interrupts

Chapter 4 Modular Programming in C and Assembler

Chapter 5 Advanced Microprocessor Architectures Intel x86 - ARM

Lab 1 HCS12 Assembler Programming

Lab 2 Clock - HCS12 Interrupts and Input-/Output

Lab 3 Radio-controlled Clock with DCF77 Interface

Webpage and Link to Moodle Course CA-SWB4-TIB4:

 www.hs-esslingen.de/

mitarbeiter/Werner-Zimmermann

Aktuelle Vorlesungen – Computerarchitektur

Prof. Dr. rer. nat (Purdue Univ.) Jörg Friedrich

Prof. Dr.-Ing. Werner Zimmermann

Hochschule Esslingen – University of Applied Sciences – Department of Information Technology

Computer Architecture

ca3a.docx VZ6.3 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 1.2

This is how a

computer
looks like

…

… or like
this?

This “gas”
station is

based on a
computer too!

And some computers even make it into
the news …

Computer Architecture

ca3a.docx VZ6.3 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 1.3

IT World Champions …

Classical IT

Consumer Electronics

Hardware

Something missing here?

Computer Architecture

ca3a.docx VZ6.3 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 1.4

... and finally Europe

Automotive Electronics

Automation Technology

Medical Electronics

Computer Architecture

ca3a.docx VZ6.3 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 1.5

The Embedded World: Automotive, Industrial & Home Automation, Medical Systems

How important is it?

100 Mio

1000 Mio

10000 Mio

Sales
Volume

2018
(units,

logarithmic
scale)

Smartphones
Tablets

Embedded
Systems

Passenger
Cars

PCs
Notebooks

CPU:
>80% Intel
<20% AMD

OS:
81% Windows
12% MacOS

7% Linux

75% Android
25% iOS

30000
Mio

Source:
www.heise.de

www.statista.com
IC Insights

1500
Mio

270
Mio
270
Mio

80 Mio

Computer Architecture

ca3a.docx VZ6.3 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 1.6

… more to come: Internet of Things IoT
 Everything will be a computer on a global network

Wearables Home Automation

Automated Cars

 Mobility Solutions

Computer Architecture

ca3a.docx VZ6.3 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 1.7

What is special with embedded systems?

• Reliability and safety a major issue buggy software can kill people

• Real time requirements computer must run in sync with external events

• Resource constraints computing speed and memory size matter (cost!)

Embedded Design
Microprocessor market shares

(Source: EDN, 2015)

13%

40%

60%

32bit16bit8bit

Volume

16%

62%

20%

0
64bit

6%

• Smaller bit size

Your washing machine does no 64bit processing!

• Moderate clock speed

It is not the CPU’s job to heat your toaster!

Sources: www.embedded.com, ESD Market Survey; Michael Barr, Real men program in C, www.embedded.com. Statista.com

Computer Architecture

ca3a.docx VZ6.3 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 1.8

Most popular Programming Languages

 Typical Application TIOBE Rating IEEE Rank

C General Purpose 16% 3

C++ General Purpose 7% 4

Java Business Applications, Android Apps 13,5% 2

Python Numerical Analysis, AI, Testing 10,5% 1

C# General Purpose 4,5% 7

Visual Basic Business Application 4% -

Javascript Web Clients and Servers 2,5% 6

PHP Web Servers 2,5% -

SQL Database 2% -

Objective C+Swift Apple IOS Apps 2% 9

R Numerical Analysis 2% 5

Matlab Numerical Analysis 1% 8

Assembler Performance Sensitive Applications 1% -

Ruby, Rust, Go, … je < 1% -

.

 Total 100% Top 10

Sources (as of Sept 2020)

a) https://www.tiobe.com/tiobe-index/
b) https://spectrum.ieee.org/computing/software/the-top-programming-languages-2019

c) https://www.ahl.com/ahl-tech-the-curious-case-of-the-longevity-of-c

Computer Architecture

ca3a.docx VZ6.3 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 1.9

Large or small …

Main Frame

 PC

 Smartphone

Automotive

Electronic Control Unit

… all computers have the same basic structure

Hard-
 ware

Analog
and Digital

Peripherials

Program
and Data
Memory

CPU
with
ALU
and

Instruction
Unit

Address, Data
and Control Bus

Analog, Digital and
Communication Interface

Hardware

Software/Hardware Interface:
Hardware Abstraction Layer

Operating System
Scheduling, Resource Mgmt., Services

Application Logic, Data Storage, HMI
Application Layer

Soft-
ware

Computer Architecture

ca3a.docx VZ6.3 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 1.10

What do you need to know: Our IT curriculum

Computer Architecture
Interface between Software and Hardware

Digital Systems
Hardware Conzepts and

Computer Building Blocks

Embedded
Software Engineering
and Communication

Control Systems

Electronics
Electrical Engineering

Physics

A
p

p
lic

a
tio

n

Im
p
le

m
e

n
ta

ti
o
n

Operating Systems
Reliable Software under
Real Time Constraints

Informatics
Software Engineering

Programming

Software Toolset Hardware and real World Application Technology

Signals and Systems
Business Management

Mathematics

Computer Networks
Real Time Communication

Data Bases

Software Applications in complex Systems

Literature

ca3a.docx VZ6.3 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 1.11

The following list is a small selection out of a large range of books about computer architecture, micropro-
cessors and microcontrollers:

Introductory Books

Computer Architecture and Organization

[1.1] Patterson, D.; Hennessy,

J.:
Computer Organization and Design. Hardware-/Software-Interface.
Morgan Kaufmann Publishers
(Deutsche Übersetzung: Rechnerorganisation und –entwurf. Spektrum
Akademischer Verlag)

[1.2] Hennessy, J.; Patterson,
D.:

Computer Architecture. A Quantitative Approach. Academic Press
(Advanced topics from the same authors as [1.1])

[1.3] Tanenbaum, A.: Structured Computer Organization. Prentice Hall
(Deutsche Übersetzung: Computerarchitektur. Pearson)

[1.4] Keller, R.; Lindermeir, W.;
Marchthaler, R. Zimmer-
mann, W.

Digitaltechnik 1 + 2. Vorlesungsskript. Hochschule Esslingen

[1.5] Friedrich, J.: Echtzeitsysteme – Vorlesungsskript. Hochschule Esslingen
[1.6] Lewis, D.: Fundamentals of Embedded Software – Where C and Assembly Meet.

Prentice Hall Verlag
[1.7] Beierlein, Hagenbruch: Taschenbuch Mikroprozessortechnik. Fachbuchverlag Leipzig

Microcontrollers

HCS12 Microcontroller Hardware and Software

[2.1] Friedrich, J.: Computerarchitektur 3 - Vorlesungsskript. Hochschule Esslingen
[2.2] Kreidl, H.; Kupris, G.;

Thamm, O.:
Mikrocontroller-Design. Hardware- und Softwareentwicklung mit dem
68HC12/HCS12. Hanser Verlag

[2.3] Huang, H.W.: The HCS12/9S12. An Introduction to Hardware and Software Interfa-
cing. Thomson Learning

Literature

ca3a.docx VZ6.3 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 1.12

[2.4] Barret, S.; Pack, D.: Embedded Systems: Design and Applications with the 68HC12 and
HCS12. Prentice Hall

[2.5] Cady, F.: Software and Hardware Engineering: Assembly and C-Programming for
the Freescale HCS12 Microcontroller. Oxford University Press

[2.6] Almy, T.: Designing with Microcontrollers: The 68HCS12. Buchtext auf CD.
http://www.hcs12text.com

Data Books
Freescale HCS12 Datasheets from
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MC9S12DP256B#Data_Sheets

[3.0] Freescale Microcontroller MC9S12DP256 All-in-one-manual (outdated):

000-MC9S12DP256.pdf
[3.1] Freescale CPU-Architecture, Instruction Set, Operand Addressing:

001-S12CPUV2-ReferenceManual.pdf
[3.2] Freescale Microcontroller MC9S12DP256B Peripherals Overview:

002-9S12DP256BDGV2-DevicesUserGuide.pdf
[3.3] Freescale Digital-I/O, Interrupt System:

003-S12DP256PIMV2-Port Integration Module.pdf
[3.4] Freescale Clock and Reset Generator, Real Time Interrupt:

004-S12CRGV2-Clock&Reset-Generator.pdf
[3.5] Freescale Timer and Capture/Compare Inputs/Outputs:

005-S12-ECT_16B8CV1-Enhanced Capture Timer.pdf
[3.6] Freescale Serial Interface:

006-S1-2SCIV2-Serial Communication Interface.pdf
[3.7] Freescale PWM-Outputs:

007-S12PWM_8B8CV1-PWM.pdf
[3.8] Freescale Analog-Digital-Converter:

008-S12ATD10B8CV2-AnalogToDigital.pdf

Literature

ca3a.docx VZ6.3 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 1.13

[3.9] Freescale CAN-Interface:
009-S12MSCANV2-CAN.pdf

[3.10] Freescale Port A, B, E, K und Multiplex-Address-Data Bus
010-S12MEBIV3.pdf

[3.11] Wytec/EVBplus Dragon12 MC9S12DP256 Development Board. Getting Started Manual
and Circuit Diagrams. www.evbplus.com

[3.12] Freescale/Metroworks Codewarrior Development Studio IDE User’s Guide.
8_16bit_IDE_Users_Guide.pdf

[3.13] Freescale/Metroworks HC12/S12 Compiler. Compiler_HC12.pdf
[3.14] Freescale/Metroworks HC12/S12 Assembler Manual. Assembler_HC12.pdf
[3.15] Freescale/Metroworks Codewarrior Debugger. Debugger_HC12.pdf
[3.16] Freescale/Metroworks HC12/S12 True Time Simulator. See [3.15]
[3.17] Freescale/Metroworks Linker. Build_Tools_Utilities.pdf

Acknowledgements

The HCS12 microcontroller and the Dragon12 evaluation board were introduced by Prof. Dr. J. Friedrich (see
[2.1]). Good job, thanks.

W. Zimmermann

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.1

Chapter 2

Architecture of a typical Microcontroller: Freescale HCS12

2.1 Basic Features of Microcontroller Family HCS12 .. 2

2.2 Hello Embedded World ... 7

2.3 Register Model, Data Types, Addressing Modes ... 15

2.4 Instruction Set 1: Data Transport ... 22

2.5 Instruction Set 2: Arithmetic and Logic Operations 28

2.6 Instruction Set 3: Compare and Branch .. 34

2.7 Instruction Set 4: Subroutine Calls and State Management 40

2.8 Stack ... 43

2.9 Instruction Size and Execution Speed .. 46

Appendix: CodeWarrior HCS12 Development Environment

2.1 Basic Features of Microcontroller Family HCS12

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.2

2.1 Basic Features of Microcontroller Family HCS12

• Von Neumann architecture no caches, no MMU

• Complex Instruction Set (CISC) many instructions and addressing modes

• Data word size nDAT=16 bit → 16 bit CPU

• Address word size nADR=16 bit

• Smallest addressable unit nmin=1 Byte

→ Address space N=2nADR · nmin =216 Byte = 64 KB

 Extensible via memory banking (pages)

• No memory alignment, i.e. instructions and data can start at any address

• Multi-byte values stored in Big Endian (Most Significant Byte first) sequence

Memory access requires the address of the first byte and the length of the data

Example: 16bit value $4433 at address $0103

Address Content

Some microprocessors, e.g. Intel
x86, use Little Endian:

Least significant byte first

0 . . .

.

$0103 $44 MSByte

$0104 $33 LSByte

.

*1
 Motorola/Freescale use $. . . instead of . . . h or 0x. . . to mark hexadecimal values, e.g. $4433 = 4433h

2.1 Basic Features of Microcontroller Family HCS12

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.3

Block Diagram of Microcontroller MC9S12DP256 (see [3.0 Page 16], [3.2 Fig. 1-1])

16bit
CPU

3 (4) KB
EEPROM

12 KB
RAM

48 (256) KB
Flash ROM

PWM-Outputs

In
te

rn
a

l
M

e
m

o
ry

T
im

e
r

Capture/Compare
In-/Outputs

2
Analog-Digital-

Converters
with

8 Inputs each

A
D

C

Clock Generator
4 / 24MHz

Reset

8

P
o

rt
 P

8

P
o

rt
 T

8

P
o

rt
 A

D

Controller Area
Network CAN

2
Serial

Interfaces

SCI0

SCI1

CAN
Codewarrior
Development

Suite
(Editor, Compiler,

Assembler,
Debugger)

Digital
Inputs/
Outputs

8

P
o

rt
 B

8

P
o

rt
 H

8

P
o

rt
 A

LEDs
and LED
Display

Switches
and

Buttons

Misc Ports
+ Interfaces

Potentio-
meter

LCD
Display

8

P
o

rt
 K

Beeper

P
o

rt
 J

P
o

rt
 S

.
.

.

The HCS12 microcontroller family
has a big number of variants
with different memory sizes

and a different mix
of peripherials

I2C, SPI, ...

Circuits
on the

Dragon12
Board

2.1 Basic Features of Microcontroller Family HCS12

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.4

Dragon12 Evaluation Board (see [3.11] and [2.1 Appendix B])

2.1 Basic Features of Microcontroller Family HCS12

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.5

Integrated Development Environment (IDE) Freescale CodeWarrior (see [3.12 – 3.17])

.mcp
Project

File

HC12
C-Compiler

HC12
Assembler

.c
Source
Code

Codewarrior IDE
Integrated Development Environment

Project Manager / Text Editor

.asm
Source
Code

Linker/Locator
.prm

Configu-
ration File

.lib
Code

Library

Object-Code

Debugger

Hex
File

.abs/.s19

True Time
Simulator

Development
Board

Dragon12

Serial
Monitor
Program

Serial Interface COM1:, ...
Format:

Motorola S-Records

 .lst,.map
List- and
Map Files

Historical Note:

Semiconductor manufacturer

Freescale in former times was

part of Motorola.

The CodeWarrior tools were

developed by Metroworks,

which was purchased by Free-

scale.

2.1 Basic Features of Microcontroller Family HCS12

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.6

MC9S12DP256 Memory Map (see [3.0 Page 120], [3.2 Fig. 1-2])
The HCS has several operating modes. In the lab we use the Normal Single Chip Mode without external memory.

$0000 HW/SW Interface: Registers to

control the On-Chip-Peripherals 1KB

All peripherals are Memory-Mapped, i.e. for
software their registers look like variables

$0400 EEPROM 3KB The EEPROM has 4KB, but 1KB is shadowed
by the peripheral registers.

$1000 RAM

12KB

Program variables
Stack for debug monitor program at the end
of the RAM area (36B)

$4000 Flash-ROM

16KB

Program code

$8000 Flash-ROM

16KB

This address range can be used to map ad-
ditional 16KB Flash-ROM pages (Page Win-
dow selected by PPAGE-register) Memory
extension to > 64KB

$C000

$FFFF

Flash-ROM

16KB

$F780 … $FE00:

Debugger Monitor Program

$FF00 … $FFFF:

Interrupt Vector Table 256B

2.2 Hello Embedded World

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.7

2.2 Hello Embedded World

Ever since Kernighan and Ritchie in their book „The C Programming Language“, the first pro-
gram to introduce a programing language used to be „Hello World“, which outputs a short
text string to the display. However, typical embedded systems don’t have a keyboard and a
display. So the idea is modified and digital output pins are toggled (Toggle Port), to which
LEDs are connected (Blinking LEDs).

Converting the idea into a running program on the Dragon12 board takes some steps:

Step 1: What is the hardware setup of the evaluation board?

Where are the LEDs connected and how can they be controlled?

Info source

[3.11]:

Getting_started

_Dragon12.pdf
S.11

Port J.1
Output
J.1= 0 Enable
LED

Port B.7 … 0
Outputs

B.x=1 LED
on

2.2 Hello Embedded World

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.8

Dragon12 Circuit Board Diagram

Dragon12_3.pdf

Dragon12_4.pdf

Dragon12_1.pdf

2.2 Hello Embedded World

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.9

Step 2: Hardware setup of the microcontroller

Where are the I/O ports in the CPU’s memory address range and how to program them?

HCS12 docu 000-MC9S12DP256.pdf [3.0]: Register Map pg.66ff and pg.129ff Input/Output Registers

(z) (z)

Data Register

(Write)

WE

(D) (A)
WR

OE(D) (D)

RD

8 Digital-In- or Outputs

Data Direction

Register DDRx

WE (D)

OE

CE

CE

In/Out

PORTx

WR (D) (D)
A

d
d
re

s
s
 D

e
c
o
d
e
r

CE
DDR

Data
Register (Read)

CE

CE
DR

Data register PORTB at address $0001

 Bit PB.x=1 Port pin x = High

Data direction register DDRB at $0003

 Bit DDRB.x=1 Port pin x as output

Same concept for PORT J
Data register PTJ at address $0268
Data direction register DDRJ at address $026A

2.2 Hello Embedded World

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.10

Step 3: Development environment, program design and coding

How do I write and compile a program?

• Installation and use of the IDE see Appendix CodeWarrior

• To simplify coding, instead of using hexadecimal addresses the IDE comes with include files

defining symbols for registers and their respective bit positions, e.g.

Predefined Symbols in
Include-Files for

for C-Programs
*1

mc9s12dp256.h

for Assembler-Programs
 mc9s12dp256.inc

Port B: Port #define PORTB (*(char*) 0x0001) PORTB: equ $0001

 PORTB Bit 0 #define PORTB_BIT0 PORTB.Bits.BIT0

 DDRB #define DDRB (*(char*) 0x0003) DDRB: equ $0003

 DDRB Bit 0 #define DDRB_BIT0 DDRB.Bits.BIT0

Port J: Port #define PTJ (*(char*) 0x0268) PTJ: equ $0268

 PTJ Bit 0 #define PTJ_PTJ0 PTJ.Bits.PTJ0

 DDRJ #define DDRJ (*(char*) 0x026A) DDRJ: equ $026A

 DDRJ Bit 0 #define DDRJ_DDRJ0 DDRJ.Bits.DDRJ0
•

*1
 Simplified, actually ports are described via C-structures and unions of bit fields and byte or word-data types.

 Unfortunately, naming conventions for ports are not unified (PORTB, but PTJ)

2.2 Hello Embedded World

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.11

Design

START

Configure LED PORTS

Turn on every 2nd LED

Invert LED state

Initialize counter i=IMAX

Decrement counter i--

Count limit i=0
reached? NoYes

Wait loop

Endless loop

C-Code (CodeWarrior project BlinkingLeds.mcp)

#include <hidef.h> //Common defines

#include <mc9s12dp256.h> //CPU specific defines

#pragma LINK_INFO DERIVATIVE "mc9s12dp256b"

#define IMAX 200000L //Delay count

long i; //Counter variable

void main(void)

{ EnableInterrupts; //Allow for debugger

 DDRJ_DDRJ1 = 1; //Port J.1 as output

 PTJ_PTJ1 = 0; //J.1=0 --> Activate LEDs

 DDRB = 0xFF; //Port B as outputs

 PORTB = 0x55; //Turn on any other LED

 for(;;)

 { PORTB = ~PORTB; //Toggle LEDs (Bitwise Not)

 for (i=IMAX; i > 0; i--)

 { //Delay loop

 }

 }

}

PORT B on the Dragon12 board is connected to the LEDs and to the Seven-

Segment-Display in parallel. If the Seven-Segment-Display shall not blink

together with the LEDs, disable it by setting outputs Port P3….0= 1111
B

2.2 Hello Embedded World

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.12

Step 4: Debug environment

How to download a program to the board and debug it? see Appendix CodeWarrior

C-
Program

Assembler
Program

CPU
Register

Memory
Content

Variables
and Visualization

2.2 Hello Embedded World

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.13

Memory Requirements of the C-Program (see file Simulator.map)

Summary of section sizes per section type:

READ_ONLY (R): 9B (dec: 155) ROM: Program code + constant data

READ_WRITE (R/W): 104 (dec: 260) RAM: Variable data 4 Byte (+ Stack 256 Byte
*1
)

NO_INIT (N/I): 23D (dec: 573) Peripheral registers (fixed for all programs)

The C-compiler does not generate the most efficient code here. By manually pro-
gramming in machine language (assembler code) rather than C, a faster and small-
er program is possible (see next page):

Summary of section sizes per section type:

READ_ONLY (R): 2A (dec: 42) ROM: Program code + constant data

READ_WRITE (R/W): 100 (dec: 256) RAM: Variable data 0 Byte (+ Stack 256 Byte
*1
)

 . . .

Execution Speed (measured with HCS12 simulator)

Run time in CPU clock ticks C-Program Assembler-Program

CPU Reset to line Toggle LEDs 99 clocks 19 clocks

1 loop cycle Toggle LEDs to Toggle LEDs 47 clocks 17 clocks

Here the stack size could have been reduced even with the C-program. The assembler program could have been im-

plemented completely without stack, if no debugging was required (the debug monitor uses the stack)

 To understand, how to optimize high level language programs for embedded sys-
tems for size and speed (and to be able to find bugs in development tools like compilers
and libraries) knowledge of assembler language programming is required.

2.2 Hello Embedded World

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.14

Blinking LEDs in optimized HCS12 Assembler (CodeWarrior project BlinkingLedsAsm.mcp)

XDEF Entry, main ; Export symbols

XREF __SEG_END_SSTACK ; Import symbols: End of stack

INCLUDE 'mc9s12dp256.inc' ; include derivative specific macros

IMAX: EQU 2048 ; Symbolic constant: Delay count

.data: SECTION ; RAM: Variable data section (not used in this program)

.const: SECTION ; ROM: Constant data (not used in this program)

.init: SECTION ; ROM: Code section

main: ; Begin of the program

Entry: LDS #__SEG_END_SSTACK ; Initialize stack pointer

 CLI ; Enable interrupts, needed for debugger

 BSET DDRJ, #2 ; Bit Set: Port J.1 as output

 BCLR PTJ, #2 ; Bit Clear: J.1=0 --> Activate LEDs

 MOVB #$FF, DDRB ; $FF -> DDRB: Port B.7...0 as outputs (LEDs)

 MOVB #$55, PORTB ; $55 -> PORTB: Turn on every other LED

loop: COM PORTB ; Complement Port B:Toggle LEDs

 LDX #IMAX ; Delay loop to control toggle Frequency

waitO: LDY #IMAX ; (Uses two nested counter loops with registers X and Y)

waitI: DBNE Y, waitI ; --- Decrement Y and branch to waitI if not equal to 0

 DBNE X, waitO ; --- Decrement X and branch to waitO if not equal to 0

 BRA loop ; Branch to loop

2.3 Register Model, Data Types, Operand Addressing

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.15

2.3 Register Model (registers accessible for assembler programs, see [3.1 Chapter 2])

 7 . . . 0 7 . . . 0

 A B
D=(A,B)

Accumulator
16 bit register D, can be used in two halves as two 8 bit
registers A and B for arithmetic-logic operations

← D →

 15 . . . 0

 X Index Register X data and/or pointers

 Y Index Register Y data and/or pointers

 SP Stack Pointer SP pointer to stack

 PC Program Counter PC address of next instruction
 7 . . . 0 (Instruction Pointer)

 CCR Condition Code Register (status register)
 Status bits for arithmetic operations and control bits

 7 6 5 4 3 2 1 0

 S X H I N Z V C CCR-Register Details

 Carry =1 Overflow for operations with unsigned operands

 Overflow =1 Overflow for signed operands (two’s complement)

 Zero =1 Operation result is null

 Negative =1 Operation result is negative

 Interrupt mask =1 Disable on-chip interrupt signals (Reset: I=1)
 Half carry Overflow for operations with BCD-numbers
 eXternal interrupt mask Disable external interrupt signals (Reset: X=1)
 Stop disable Ignore stop command (State after CPU reset: S=1)

2.3 Register Model, Data Types, Operand Addressing

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.16

Data Types

 HCS12 80x86

 Assembler
*1

 HCS12 C
*1

 Visual C++

• Natural numbers (unsigned)

*2

• Whole numbers (signed, 2s-complement)

 8bit −128 … +127

 0 … 255
DC.B, DS.B

*3

(byte)

 char

unsigned char

 16bit −32768 … +32767

 0 … 65535
DC.W, DS.W

*3

(word)

short, int

unsigned short
short

unsigned short

 32bit -2147483648 …+2147483647

 0 … 4294967295
DC.L, DS.L

*3

(long, dword)

long

unsigned long
int, long

unsigned int, long

• Floating-point numbers

IEEE 32bit - float, double
*1
 float

IEEE 64bit - (double)
*1

 double

• Addresses/Pointers
 (for all data types)

16bit

(near pointer)

16bit

(near pointer)

32bit or 64bit

Bit field 1bit 8, 16 or 32bit 32bit

Enumeration - 16bit 32bit

Array
*3
 datatype name[count]

Structure, union - struct, union

2.3 Register Model, Data Types, Operand Addressing

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.17

Coding of Numbers and String Constants

 HCS12 Assembler C

Decimal (Base 10) -34, 127

Hexadecimal (Base 16) $3F8A , -$3F 0x3F8A

Octal (Base 8) @7345

Dual (Base 2) %10101001 0b10101001

Floating-point - 3.14159 , 1.6e-19

ASCII character 'Z' 'Z'

ASCIIZ string
*4

 "This is a string", 0 "This is a String"

*1

The bit size of most data types can be configured via HCS12 C-compiler options.
*2

Assembler does not make a difference between signed and unsigned data.
*3

Variable in RAM-memory: name: DS.B count

defines 8bit variables in RAM-memory, which can be used via their name. The variables will not be initialized.

Use count > 1 to define an array. Use DS.W and DS.L to define 16bit or 32bit variables and arrays.

Constant in ROM-memory: name: DC.B value

defines 8bit constants in ROM-memory, which can be used via their name. The constant will be initialized to

value Use DC.W and DC.L to define 16bit and 32bit constants.

Use name: DCB.B count, value

 to define a block of constants with count bytes and initialize each byte to value. Same with DCB.W and. DCB.L.

*4

 In C the end of a string will automatically be marked with a 0-byte (ASCII Zero String). In Assembler the 0-
byte must be specified explicitly.

2.3 Register Model, Data Types, Operand Addressing

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.18

Operand Address Modes (see [3.1 Chapter 3], [1.4 Chapter 4], [2.1 Chapter 2.7])

HCS12 is a Two-Address-CPU, i.e. a CPU instruction can have up to two operands. One of
the operands (destination operand) will be overwritten by the instruction’s result:

Register operands in C/C++ in HCS12-ASM

(Explicit)
Register Address

INST reg

Registers are explicitly specified as operands. Rarely used, HCS12
prefers implicit register addresses.

Example: X=D (D→X) TFR D, X Copy value of register D to register X

Implicit
(Register) Address

Freescale term:

Inherent INH

INST

The operand (one of the registers A, B, D, X, Y, SP) is contained im-
plicitly in the instruction mnemonic.

Example: X++ INX Increment the value of register X

Memory variable operand

Direct Address

DIR 8bit, EXT 16bit Address

INST address

The operand’s memory address is part of the instruction. Program-
mers typically use variable names rather than addresses The address
will be assigned by the compiler.

Example: D=*0x2000

 D = var1

LDD $2000 (no Hash)

LDD var1

Load D with the value at memory address 2000h
Load D with the value of variable var1

2.3 Register Model, Data Types, Operand Addressing

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.19

Constant operands Warning: Without #... const would be an address rather than a constant!

Immediate Operand

Immediate IMM

INST #const

The operand is part of the instruction. Constants must be marked by

#..., e.g. #20, #−20, #$0A, #%01101011

Example: D=0xB010

 D= &var1

LDD #$B010
(with Hash!)

LDD #var1

Load constant B010h into register D

immediate for source operand, dest. operand implicit

Load D with the address of variable var1

Indirect Address in various variants (Motorola/Freescale term: Indexed)

Register-indirect …

Indexed IDX

INST 0, regX,Y,SP

Memory address in register X, Y, SP, i.e. register used as pointer
Example: D = *X

LDD 0, X

Load register D with the value at memory address
in X (indirect address)

… with Pre- or Post-
Increment or Dec-
rement

Auto Increment IDX

INST const 1,…,+8, {+|-}regX,Y,SP
INST const 1,…,+8, regX,Y,SP{+|-}

The pointer in register X, Y, SP will be incremented or decremented
by some constant 1, … , 8 before (pre) or after (post) using the
pointer to address the operand.

X = X − 2; D =*X

D = *X; X = X + 4

LDD 2, −X

LDD 4, X+

Load memory value, to which X points, into regis-
ter D, decrement X by 2 before

 . . ., increment X by 4 afterwards

2.3 Register Model, Data Types, Operand Addressing

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.20

… with index/offset

Indexed

IDX 5bit constant

IDX1 9bit constant

IDX2 16bit constant

INST const, regX,Y,SP,PC address = const +regX,Y,SP,PC

INST regA,B,D, regX,Y,SP,PC address = regA,B,D+regX,Y,SP,PC

The operand’s address is the sum of a constant plus register X, Y or
SP or the sum of two registers A, B or D plus X, Y or SP.

Example:
Let char var1[…]
with &var1=0x2000

Y = var1[X]

var1[X] = *(&var1+X)

Y = *(D+X)

 array of char

LDY var1, X

(instead of var1 any 16bit

constant possible

LDY D, X

Load Y with var1[X], i.e. the value at memory ad-
dress var1 + X (indexing array var1 by index X)

X

memory

mem($2000+ X)

offset in

register

memory

operand

&var1 = $2000

base address in instruction

effective

address

$2000 + X
+

Load Y with contents of memory address D + X

Memory-indirect
… with index

Indexed-Indirect

[IDX2]

INST [const, regX,Y,SP,PC]

INST [D, regX,Y,SP,PC]

The operand’s memory address is in a pointer in memory. This
memory address will be addressed via another pointer, which is cal-
culated as the value of register X, Y, SP or PC plus a constant or reg-
ister D (Note: A, B not allowed here!).

Example:

Y = *(*(D+X))

LDY [D, X]

Load Y with the value of the memory cell, to which
the memory pointer points, to which D+X point

2.3 Register Model, Data Types, Operand Addressing

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.21

Let char *var1[…]
With
&var1[…]=0x2000

Y = *var1[X]

*var1[X] = *(*(&var1+X))

 Array of point-
ers to char

LDY [var1, X]

Load Y with the memory cell to which a pointer in
var1[X] points.

 (access via an array of pointer)

Speicher

mem($2000+X)

mem(mem($2000+X))

Pointer im

Speicher

Operand

im Speicher

X

Offset im

Register

&var1 = $2000

Basisadresse im Befehl

Adresse
des Pointers

$2000 + X
+

effektive Adresse

mem($2000+X)

Pointer wird indiziert adressiert Operand wird Speicher-indirekt adressiert

Branch instructions use so called relative addressing (Motorola/ Freescale-name REL). Rela-
tive addresses use the current value of the instruction pointer and add a constant offset,
which is included in the instruction. The programmer need not care about details, but simply
uses a label as the target of the branch:

 start: . . .

 BRA start

Unfortunately, normal branches limit the offset to 8bit. However, there is a Long Branch ver-
sion LBRA using a 16bit offset (see chapter 2.6).

2.4 Data Transport Instructions

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.22

2.4 Instruction Set 1: Data Transport (see [2.1 Chapter 2.9], [3.1 Chapter 5, 6])

• Data transport instructions (including stack)

• Arithmetic and logic instructions

• Compare and branch instructions (including software interrupts)

• Miscellaneous instructions

 Abbreviations

 regA,B,D. . . One of the registers A, B, D, . . .

 mem Memory operand with arbitrary memory addressing

 (direct, indexed, indirect-indexed)

 imm Immediate operand

 mem_i mem or imm

 adr Code address relative to PC

 LD{AA|AB|…|S} Abbreviation for LDAA, LDAB or LDS

 8bit or 16bit Used as index: Size of an operand

If not stated otherwise, all instructions do modify CCR status bits N, Z, V, C depending on the
instruction’s result such that conditional branch instructions can be used directly without a
preceding compare instruction.

2.4 Data Transport Instructions

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.23

Transport Instructions (Status bits N, Z, V, C are modified by LD… and ST… instructions only)
LD{AA|AB|D|X|Y|S} mem_i
*2

mem_i → regA,B,D,X,Y,SP LoaD register from memory
A, B are loaded with an 8bit, D, X, Y,
SP are loaded with an 16bit value

ST{AA|AB|D|X|Y|S} mem *2

 regA,B,D,X,Y,SP → mem STore register to memory

TFR regA,B,D,X,Y,SP,CCR ,
regA,B,D,X,Y,SP,CCR

*1

reg → reg TransFeR register to register
If the source register is 8bit and the
destination register is 16bit, the MS-
Byte will be loaded with the sign of
the 8bit value (Sign Extension). Vice
versa only the LSByte will be copied.

EXG regA,B,D,X,Y,SP,CCR ,
*1

regA,B,D,X,Y,SP,CCR

reg ↔ reg EXchanGe register
Swap register contents

 TAB, TBA

TSX, TSY, TXS, TYS

TAP, TPA

XGDX, XGDY

A → B bzw. B → A

SP→X, SP→Y, X→SP, Y→SP

A → CCR, CCR → A

D ↔ X, X ↔ D

Variants of TFR and EXG
(shorter opcodes)

MOVB mem_i, mem
MOVW mem_i, mem
*1

mem_i → mem 8bit
mem_i → mem 16bit
Adressing [IDX], IDX1, IDX2 not possible,

for IDX only -16 … +15 is allowed

MOVe Byte
MOVe Word
Direct memory to memory copy

SEX regA,B,CCR, regD,X,Y,SP
*1

regA,B,C → regD,X,Y,SP Sign EXtension Copy
from 8bit to 16bit for 2s-comple-
ment-numbers (same as TFR)

*1 These instruction do not modify status bits N, Z, V, C. *2 These instructions do modify status bits N, Z, V, but not C !

2.4 Data Transport Instructions

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.24

Calculate a pointer (indexed or indirect address = effective address)

LEA{X|Y|S} mem
*1

Address of mem → regX,Y,SP

Load Effective memory Ad-
dress into register
Note: Calculation is done during run-
time, not compile time

Stack (see chapter 2.6)

PSH[A|B|C} *1

PSH{D|X|Y} *1

SP-1→SP, regA,B,CCR→Stack

SP-2→SP, regD,X,Y→Stack

PuSH register to stack
Copy register on stack

PUL[A|B|C} *1

PUL{D|X|Y} *1

Stack→regA,B,CCR, SP+1→SP

Stack→regD,X,Y, SP+2→SP

Pull register from stack
Copy from stack to register

*1

These instructions (except PULC) do not modify status bits N, Z, V, C.

Note:
PSH… und PUL… can be substituted by ST… and LD…:

E.g.: STAA 1, -SP = PSHA

 STD 2, -SP = PSHD

 LDAA 1, SP+ = PULA

 LDD 2, SP+ = PULD

Modification of the stack pointer SP without actually copying data (required in chapter 4):
 LEAS n, -SP Allocate stack space for n byte (LEAS n, –SP = LEAS –n, SP)

 LEAS n, +SP Free n Byte from stack (LEAS n, SP = LEAS n, +SP)

2.4 Data Transport Instructions

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.25

Example Program 1 (CodeWarrior project AsmIntro.mcp)

.data: SECTION ; Global variables in RAM (uninitialized)

var1: ds.w 1 ; short var1

var2: ds.b 1 ; char var2

var3: ds.b 2 ; char var3[2]

.const: SECTION ; Global constants in ROM (initialized)

const1: dc.b $00, $11, $22, $33 ; const char const1[4]= { 0x00, 0x11, ... };

.init: SECTION ; Program code (Address mode of explicit operand)

main: . . .

 LDD #$1234 ; D = 0x1234 (immediate)

 TFR D, X ; X = D = 0x1234 (register)

 STD var1 ; var1 = D = 0x1234 (direct)

 STAA var2 ; var2 = A = 0x12

 STD var3 ; var3 = D with var3[0] = 0x12, var3[1]= 0x34

 LDD const1 ; D = const1 = 0x0011 (direct)

 LDD #const1 ; D = &const1 (immediate)

2.4 Data Transport Instructions

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.26

Continued ; D=&const1 (from previous instruction)

 LDY #$0001 ; Y = 0x0001 (immediate)

 LDX D, Y ; X = *(D+Y) = *(&const1+1) = 0x1122 (indexed)

 LDX const1, Y ; X = const1[Y] = 0x1122 (indexed) const1[Y]=*(&const1+Y)

 LDY #const1 ; Y = &const1

 LDAA 1, Y+ ; A = *Y = 0 (indirect with post-increment)

 ; Y = Y+1 = &const1[1]

 LDAA 2, +Y ; Y = Y+2 = &const1[3]

 ; A = *Y = 0x33 (indirect with pre-increment)

 LDAA 1, -Y ; Y = Y−1 = &const1[2]

 ; A = *Y = 0x22 (indirect with pre-decrement)

 LDAA 1, Y- ; A = *Y = 0x22 (indirect with post-decrement)

 ; Y = Y−1 = &const1[1]

 LDD #const1 ; D = &const1

 STD var1 ; var1 = D = &const1

 LDX #0000 ; X = 0

 LDD var1, X ; D = var1[X] = *(&var1+X) = &const1 (indexed)

 LDD [var1, X] ; D = *var1[X]= *(*(&var1+X))= 0x0011 (indirect indexed)

2.4 Data Transport Instructions

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.27

Continued

 LDD #$AAAA ; D = 0xAAAA

 LDX #$5555 ; X = 0x5555

 LDAA #$7F ; A = 0x7F

 TFR A, X ; X = A = (sign extended) 7Fh = 0x007F

 LDAA #$80 ; A = 0x80

 TFR A, X ; X = A = sign extended 80h = 0xFF80

 TFR X, B ; B = X
LSB

 = 0x80

 MOVW #$5678,var1; var1 = 0x5678

 MOVW var1, var2 ; var2 =0x56, but note: var3[0] = 0x78 will be overwritten

 LDX #var3 ; X = &var3

 MOVB var1, 0,X ; *X = var3[0] = MSB of var1 = 0x56

 MOVB 0,X, 1,X ; var3[1] = var3[0] = 0x5656

 LDD var1 ; D = var1 = 0x5678

 LDD var1+1 ; D = (LSByte of var1, MSByte of var2) = 0x7856

 LDD var1+3 ; D = (var3[0], var3[1]) = 0x5656

2.5 Arithmetic and Logic Instructions

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.28

2.5 Instruction Set 2: Arithmetic and Logic Operations

Add, Subtract, Increment, Decrement, Invert Sign

AB{A|X|Y}

SBA
B+A → A, B+X → X, B+Y → Y

A −B → A

ADD/SuBtract
(A, B are loaded with a 8bit, D, X, Y,
are loaded with a 16bit value)

ADD{A|B|D} mem_i
SUB{A|B|D} mem_i

regA,B,D + mem_i → regA,B,D

regA,B,D − mem_i → regA,B,D

ADD 8bit ±8bit or 16bit ±16bit
SUBtract

ADC{A|B} mem_i8bit
SBC{A|B} mem_i8bit

(ADC, SBC not with D)

regA,B + mem + C → regA,B

regA,B − mem − C → regA,B

ADd with Carry 8bit

SuBtract with Carry 8bit

INC mem8bit
IN{CA|CB|X|Y|S} *1

DEC mem8bit
DE{CA|CB|X|Y|S}

*1
(INC, DEC not with D)

mem+1 → mem

regA,B,X,Y,S+1→ regA,B,X,Y,S

mem-1 → mem

regA,B,X,Y,S-1 → regA,B,X,Y,S

INCrement memory 8bit
INcrement register
DECrement memory 8bit
DEcrement register

CLR mem8bit
CLR{A|B}

(CLR not with D)

0 → mem

0 → regA,B
CLeaR byte
(Load with 0)

NEG mem8bit
NEG{A|B}

 (NEG not with D)

−mem → mem

−regA,B → regA,B
NEGate byte
Multiply by −1 (invert sign), sets C=1

if A≠0 or B≠0, sets V, if A=$80 or
B=$80 !

*1

 INS und DES do not modify status bits N, Z, V, C.

2.5 Arithmetic and Logic Instructions

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.29

Bitwise logical Operations

COM mem8bit

COM{A|B}
/mem → mem

/regA,B → regA,B
COMplement 1’s-complement-

(Bitwise NOT)

AND{A|B} mem_i8bit
ANDCC imm 8bit
ORA{A|B} mem_i8bit
ORCC imm8bit
EOR{A|B} mem_i8bit

regA,B AND mem _i → regA,B
CCR AND imm → CCR

regA,B OR mem_i → regA,B
CCR OR imm → CCR

regA,B XOR mem_i → regA,B

Bitwise AND

Bitwise OR

Bitwise Exclusive OR

Bit Operations

CLC, SEC

CLV, SEV
0 → C, 1 → C

0 → V, 1 → V

CLear/SEt Carry bit in CCR
CLear/SEt oVerflow bit in CCR

BCLR mem8bit, imm

BSET mem8bit, imm
mem AND /imm → mem

mem OR imm → mem

Bit CleaR 8bit
Bit SET 8bit

Multiply, Divide

MUL
EMUL, EMULS

A x B → D unsigned

D x Y → (Y, D) unsigned/signed

MULtiply 8bit x 8bit → 16bit

 16bit x 16bit → 32bit

IDIV, IDIVS

EDIV, EDIVS

FDIV

D / X → X, Remainder in D

(Y, D)/ X → Y, Rem. in D
 unsigned/signed

D*216 / X → X, Rem. in D

DIVide 16bit / 16bit 16bit

 32bit / 16bit → 16bit

“Pseudo 32bit” / 16bit 16bit

2.5 Arithmetic and Logic Instructions

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.30

Shift and Rotate

LSL mem8bit
LSL{A|B|D}
ASL mem8bit

ASL{A|B|D}

mem << 1 → mem 8bit

regA,B,D << 1 → regA,B,D
Logical Shift Left
Arithmetic Shift Left
Shift left by 1bit for signed and un-
signed values
MSB shifted to CCR Carry bit
LSB cleared to 0

LSR mem8bit
LSR{A|B|D}

mem >> 1 → mem 8bit

regA,B >> 1 → regA,B,D
Logical Shift Right
Shift right by 1bit for unsigned val-
ues. LSB shifted to CCR Carry Bit
MSB cleared to 0

ASR mem8bit
ASR{A|B}

 (ASR not with D)

mem >> 1 → mem 8bit

regA,B >> 1 → regA,B,D
(MSB=Vorzeichen bleibt unverändert)

Arithmetic Shift Right
Shift right by 1bit for signed values.
LSB shifted to CCR Carry Bit.
MSB (=sign of value) not changed.

ROL mem8bit
ROL{A|B}

 (ROL not with D)

mem << 1 → mem + C 8bit

regA,B << 1 → regA,B + C

ROtate Left
Rotate left by 1bit. Carry Bit shifted
to LSB, MSB shifted to Carry Bit.

ROR mem8bit
ROR{A|B}

 (ROR not with D)

mem >> 1 → mem + C * 8
regA,B >> 1 → regA,B + C * 8

ROtate Right
Rotate right by 1bit. Carry Bit shifted
to MSB, LSB shifted to Carry Bit.

2.5 Arithmetic and Logic Instructions

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.31

Example Program 2 (CodeWarrior project AsmIntro2.mcp)

C-Program Equivalent Assembler-Program

char a08 = 1, c08 = 3;

int a16 = 1, b16 = 2, c16 = 3;

long a32 = 1, b32 = 2, c32 = 3;

unsigned char cu08= 3;

unsigned int cu16= 3;

void main(void)

{ c16 = a16 + b16; //Addition 16bit

 c32 = a32 + b32; //Addition 32 bit

 c08 = (char) c16; //signed 16 8bit

 cu08 = (unsigned char) cu16;
 //unsigned 16 8bit

 LDD a16

 ADDD b16

 STD c16

 LDD a32+2 ;Add LSW

 ADDD b32+2

 STD c32+2

 LDD a32 ;Add MSW

 ADCB b32+1 ; with Carry!

 ADCA b32 ;(HCS12 has no 16bit ADC)

 STD c32

 LDAB c16+1 ;LSByte of c16

 STAB c08 ;MSbyte not used

(alternative: MOVB c16+1, c08)

 LDAB cu16+1 ;same as signed

 STAB cu08

2.5 Arithmetic and Logic Instructions

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.32

C-Program Equivalent Assembler-Program

 c16 = c08; //signed 8 16 bit

 cu16 = cu08; //unsigned 8 16 bit

 cu16= cu16 >> 2; //Shift right unsigned

 c16= c16 >> 2; //Shift right signed

 c08 = c08 | 0x81; //Set bits 7 and 0 to ‘1’

 a08 = a08 & ~0x81;//Set bits 7 and 0 to ‘0’

 LDAB c08

 SEX B,X ;Sign extension

 STX c16

 MOVB cu08, cu16+1 ; LSB

 MOVB #0, cu16 ;Set MSB=0

 LDD cu16

 LSRD ;2x shift logic

 LSRD

 STD cu16

 LDD c16

 ASRA ;Shift MSByte arith.

 ; with LSB CY

 RORB ;Shift LSByte

 ;fill LSB from MSByte

 ASRA ;same again ...

 RORB

 STD c16

 BSET c08, #$81

 BCLR a08, #$81

2.5 Arithmetic and Logic Instructions

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.33

C-Program Equivalent Assembler-Program

 c16 = a16 ^ b16; //Bitwise Exclusive OR

 c16 = a16 & b16; //Bitwise AND

 c16 = a16 && b16; //Logical AND

 LDD a16

 EORB b16+1 ;(HCS12 has no 16bit EOR)

 EORA b16

 STD c16

 LDD a16 ;as above, but AND

 ANDB b16+1 ; instead of EOR

 ANDA b16

 STD c16

 LDD a16 ;(AND etc. work bitwise!)

 CPD #0 ;a16==FALSE (0) ?

 BEQ L1

 LDD b16

 CPD #0 ;b16=FALSE (0) ?

 BNE L2

L1: LDY #0 ;Result FALSE (0)

 BRA L3

L2: LDY #1 ;Result TRUE (1)

L3: STY c16

2.6 Compare and Branch Instructions

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.34

2.6 Instruction Set 3: Compare and Branch

Compare and Test

CBA
CMP{A|B} mem_i8bit
CP{D|X|Y|S} mem_i16bit

Compute A – B

Compute regA,B - mem_i

Compute regD,X,Y,SP- mem_i

Compare
Compare register with register, vari-
ables or constant,
set bits in CCR

TST mem8bit
TST{A|B}

Compute mem – 0

Compute regA,B – 0

Test if operand is 0 or nega-
tive, set bits in CCR

BIT{A|B} mem_i8bit Compute regA,B AND mem_i BIt Test
Like AND, but sets CCR bits only

Unconditional and Conditional Branches (branches check, but do not change status bits N, Z, V, C)

JMP mem mem → PC JuMP like {L}BRA, but can use

indirect/indexed addressing

{L}BRA adr adr → PC BRanch Always
{L}BRN adr No Operation, same as NOP BRanch Never

{L}BCC adr

{L}BCS adr

{L}BNE adr

{L}BEQ adr

{L}BPL adr

{L}BMI adr

{L}BVC adr

{L}BVS adr

adr → PC, if C=0

. . . if C=1

. . . if Z=0

. . . if Z=1

. . . if N=0

. . . if N=1

. . . if V=0

. . . if V=1

Branch if Carry Clear
Branch if Carry Set
Branch if Not Equal
Branch if EQual
Branch if Plus (positive)
Branch if Minus (negative)
Branch if Overflow Clear
Branch if Overflow Set

2.6 Compare and Branch Instructions

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.35

{L}BGT adr

{L}BGE adr

{L}BEQ adr

{L}BLE adr

{L}BLT adr

adr → PC if . . . >

 >=
 ==
 <=
 <

Branch if GreaTer
Branch if Greater or Equal
Branch if Equal
Branch if Less or Equal
Branch if Less
Use after a compare or arithmetic
operation with signed values

{L}BHI adr

{L}BHS adr

{L}BEQ adr

{L}BLS adr

{L}BLO adr

adr → PC if . . . >

 >=
 ==
 <=
 <

Branch if Higher
Branch if High or Same
Branch if Equal
Branch if Lower or Same
Branch if Lower
Use after a compare or arithmetic
operation with unsigned values

BRCLR mem8bit, imm, adr

BRSET mem8bit, imm, adr

adr→PC if mem & imm=0

adr→PC if /mem & imm=0

BRanch if bits are CLeaRed
BRanch if bits are SET

All conditional branches check the status bits in the CCR register, which have been set by a
previous operation, typically a compare.

adr is a code memory address, which the programmer did specify via a label. The instruction

uses relative addressing (see chap. 2.3). Normal branches with 8bit offsets can only jump
+/ 128 bytes from the current instruction pointer location. If you need to jump over a longer
distance, use the long branch instructions {L},which use 16bit offsets and thus can reach any

HCS12 address.

2.6 Compare and Branch Instructions

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.36

Loop Instructions (These instructions do not modify status bits N, Z, V, C)

IBEQ regA,B,D,X,Y,SP, adr

DBEQ regA,B,D,X,Y,SP, adr

IBNE regA,B,D,X,Y,SP, adr

DBNE regA,B,D,X,Y,SP, adr

regA,B,D,X,Y,SP ± 1 → reg
. . .

adr → PC if reg
. . .

 = 0

adr → PC if reg
. . .

!= 0

Increment/Decrement regis-
ter and . . .

. . . Branch if Equal to 0

. . . Branch if Not Equal to 0

TBEQ regA,B,D,X,Y,SP, adr

TBNE regA,B,D,X,Y,SP, adr

adr → PC if reg
. . .

 = 0

 if reg
. . .

!= 0

Test register and Branch if …

2.6 Compare and Branch Instructions

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.37

Example Program 3 (CodeWarrior project AsmIntro2.mcp)

C-Program Equivalent Assembler-Program

if (c16 <= 32) //if – else

{ a08 = 4;

 . . .

} else

{ a08 = 8;

 . . .

}

. . .

if (cu16 <= 32) //if - else

{ . . .

}

. . .

for (;;); //endless loop

 LDD c16

 CPD #32 ;Compare

 BGT L1 ;Assume signed numbers

 MOVB #4, a08 ;or LDAB #4; STAB a08

 . . .

 BRA L2

L1: MOVB #8, a08 ;or LDAB #4; STAB a08

 . . .

L2: . . .

 LDD cu16

 CPD #32 ;Compare

 BHI L3 ;Assume unsigned numbers

 . . .

L3: . . .

 BRA *+0 ;* =current location counter

2.6 Compare and Branch Instructions

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.38

C-Program Equivalent Assembler-Program

for (c08=0; c08 < 3; c08++) //for

{ c16 = c16 + a16;

}

while (c08 <= 32) //while - do

{ a16++;

}

do { ... } while (c08 <= 32) //do - while

 CLR c08 ;Initialize loop counter

 BRA L4 ;Jump to test condition

L0: LDD c16 ;Loop body {…}

 ADDD a16

 STD c16

L1: INC c08 ;Increment loop counter

L4: LDAB c08 ;Test loop condition

 CMPB #3

 BLT L0 ;Go to next step

 BRA L3 ;Branch to test cond.

L2: LDX a16 ;Loop Body {…}

 INX

 STX a16

L3: LDAB c08 ;Test loop condition

 CMPB #32

 BLE L2 ;Go to next step

 Same as while, but without BRA L3

2.6 Compare and Branch Instructions

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.39

C-Program Equivalent Assembler-Program

enum { NONE, ONE, TWO } eVal;

. . .

switch (eVal) //switch-case

{ case NONE: . . .

 break;

 case ONE: . . .

 break;

 case TWO: . . .

 break;

}

NONE: EQU 0 ; Values of the

ONE: EQU 1 ; enumeration

TWO: EQU 2

eVal: DS.W 1 ; Enumeration

 . . .

switch: LDD eVal ; Compute

 LSLD ; index into

 TFR D, X ; branch table

 JMP [swK, X]

swK: DC.W caseNONE ; Branch

 DC.W caseONE ; table

 DC.W caseTWO

caseNONE: . . .

 BRA endCase

caseONE: . . .

 BRA endCase

caseTWO: . . .

 BRA endCase

endCase:

2.7 Subroutine Calls and CPU State Management

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.40

2.7 Instruction Set 4: Subroutine Calls and State Management

Subroutine Calls (These instructions do not modify status bits N, Z, V, C)

JSR mem mem → PC

Saves return address on stack

Jump to SubRoutine
Like BSR, but can use indi-
rect/indexed destination address

{L}BSR adr adr → PC
Saves return address on stack

Branch to SubRoutine
Like JSR, but only relative addresses
(shorter opcode than JSR)

RTS Restores the return address from
stack

ReTurn from SubRoutine

CALL, RTC Subroutine call and return for memory sizes > 64KB

Interrupts (see chapter 3) (These instructions do not modify status bits N, Z, V, C)

Interrupt = subroutine, which will be called by a hardware event. An interrupt will store registers on the stack.

RTI Restores registers from stack.

Do not use RTS for interrupts!
ReTurn from Interrupt

CLI 0 → I

(Note: Debugger shows this as
ANDCC #$EF)

CLear Interrupt mask
Global interrupt enable.

SEI 1 → I

(Note: Debugger shows this as
ORCC #$10)

SeT Interrupt mask
Global interrupt disable.

SWI Store return address and register set
X, Y, D, CCR on stack, not maskable,
does disable interrupts I=1

SoftWare Interrupt
Call the SWI Interrupt Service Rou-
tine (used by debug monitor)

2.7 Subroutine Calls and CPU State Management

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.41

TRAP Like SWI TRAP for unimplemented op-
codes
Call the TRAP Interrupt Service Rou-
tine

Miscellaneous Operations

NOP - No Operation
WAI, STOP WAIt and STOP

Energy Saving mode: Turn CPU off without/with all on-chip peripherals.
Operation will be resumed via an interrupt. Should not be used when testing
a program with the HCS12 debugger.

MEM, REV, EMIN…, EMAX…,

MIN…, MAX…, ETBL, TBL, …

Instructions to implement Fuzzy Logic minimum and maximum operations
and data table access see [3.1].

2.7 Subroutine Calls and CPU State Management

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.42

Example Program 4 (CodeWarrior project AsmIntro2.mcp)

C-Program Equivalent Assembler-Program

int betrag(int x)

{ return x > 0 ? x : -x;

}

void main(void)

{ . . .

 c16 = betrag(a16);

 . . .

}

betrag: CPD #0 ;x > 0?

 BGT L0 ;if yes: return x

 COMA ;compute -x

 COMB

 ADDD #1

L0: RTS ;return

main: . . .

 LDD a16 ;Pass parameter

 JSR betrag;Call subroutine

 STD c16 ;Store result

Simplest way to pass parameters: Parameters in register(s) here D
 Return value(s) in register(s) here D

Functions with many parameters: Pass parameters via Stack, see chapter 4.

Note: Depending on configuration, the C-compiler may optimize the code and thus the assembler code generated will
look different from the code shown here. For the example programs optimization was turned off.

2.8 Stack

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.43

2.8 Stack

Purpose: RAM memory range to temporarily save registers and subroutine addresses

Idea: Last-In-First-Out-(LIFO) memory, filled from the end (End of Stack EOS)

Read/write access with register-indirect addressing via the stack pointer SP.
SP points to the latest byte stored on the stack (Top of Stack TOS)

(1) C0H

0CH

before (1)
after (2)

after (1)
before (2)

SP=
SP-2

SP=
SP+2

(2)

return
address

JSR mySub

. . .

. . .

mySub: . . .

. . .

RTS

. . .

C009H

C00CH

Program Memory

C043H

. . .

LDS #EOS initialize SP to EOS (End of Stack)

call subroutine

subroutine

return from subroutine

Stack

1Byte

free

used

EOS =
__SEG_END_SSTACK

1103H

1102H

1101H

Register SP

points to
TOS

Example:
Subroutine call

2.8 Stack

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.44

Example: Save registers to Stack (CodeWarrior project AsmIntro.mcp)

Program Memory

 LDS #EOS

 . . .
1: LDD #$1122
2: LDX #$3344

3: LDY #$5566
4: PSHX

5: PSHA

6: PSHB
 . . .

7: PULD

 . . .

8: PULX

9: LDY -2, SP

Stack

1Byte

free

used

Register SP

points to
TOS

Register Content

D
A B

X Y

EOS =
__SEG_END_SSTACK

XMSB=33H

XLSB=44H

before (4)
after (8)

after (6)
before (7)

B=22H

A=11H

11 22

33 44
55 66

22 11

33 44

after (4)

after (5)

33 44

• Allocate stack in RAM, automatically done by Linker

*1

• Initialize stack pointer SP at begin of program: LDS #__SEG_END_SSTACK

*1

• Stack pointer managed (increment/decrement) automatically by hardware

• Number of bytes stored on stack and retrieved from stack must be balanced in a program

2.8 Stack

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.45

• Interrupt-Service-Routines (see chapter 3) do automatically save and restore the register
set on the stack:

Stack when ISR
execution starts

1Byte

Free

Used

EOS =
__SEG_END_SSTACK

CCR

X

Y

Return
Address

Interrupt
Vector Table

SWI
or

Hardware
Interrupt
Request

ISR: . . .

 . . .

 RTI

Start Address
of Interrupt Service

Routine

SP

B

A

*1
 The CodeWarrior HCS12 development tools do define the stack size in linker control files Simulator_Lin-

ker.prm and Monitor_Linker.prm. The default size is STACKSIZE 0x100 (256 byte). The linker provides a

symbol __SEG_END_SSTACK, which points to the end of the stack. Assembler programs use this to initialize the

stack pointer SP:

; Import symbols

 XREF __SEG_END_SSTACK ; End of stack

; Begin of program code

main: LDS #__SEG_END_SSTACK ; Initialize stack pointer

2.9 Instruction Size and Execution Speed

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.46

2.9 Instruction Size and Execution Speed

• Instruction Size (Opcode length)

HCS12 opcodes are 1 or 2 Byte long plus a variable number of bytes for a direct operand
address or an immediate operand or an operand index. Constants are stored as 5, 9 or
11bit values when possible, to save memory space. Total instruction length is 1 to 6 byte.

• Execution Time (Instruction clock cycles)

The number of clock cycles required to execute an instruction depends on the length of the
instruction (cycles to read the instruction from memory), the location of the operands and
result (read/write registers or memory) plus the actual execution of the operation.

Reading/writing 2 bytes from a register or internal ROM/RAM memory typically takes 1 CPU
clock cycle. See next page for examples.

• Detailed info can be found in literature reference [3.1, chapter 6.7 and appendix A], but is
hard to read, because there are many dependencies. An easy way to find out is as follows:

o The size of an instruction (including operands) can be seen in the Disassembly list-
ing of the IDE’s source code editor (right click to open the listing) or in the Disas-
sembly-Window of the debugger. The total size of a program can be found in the
Linker/Locator’s Map file.

o The execution time of an instruction or program can be “measured” in the HCS12
simulator (debugger in simulation mode), see CPU Cycle display in the debugger’s
register window).

2.9 Instruction Size and Execution Speed

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.47

Rules of Thumb …

… for Instruction Size: Opcode + Operand Address Information

• Opcode length for most instructions: 1 byte (MOVB, MOVW, TFR: 2 byte)

• Direct address operand: 2 byte (if address ≥ 256)

• Immediate operand or index/offset constant: 1 or 2 byte (if constant ≥ 256)

• Implicit register address: 0 (included in opcode)

… for Execution Time: Fetch Instruction + Fetch Operand(s)

 + Execute Operation + Store Result

• Read/Write memory access: 1 cycle per 2 byte

 (instruction or operand)

• Register operand access: 0 (included in execute operation)

• Calculate pointers register-indirect: 1 cycle

 memory-indirect: 2 cycles (includes read pointer from memory)

• Execute arithmetic/logic operation: 1 cycle

2.9 Instruction Size and Execution Speed

ca3b.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2.48

• Instruction size and speed depend on type and operand addressing mode. Examples:

Address mode *1 Instruction Length in
byte

Speed in CPU-

clock cycles
*2

 Source operand Destination operand

Immediate (IMM) Register LDD #1234 3 2

Register indirect (IDX) Register LDD 0, X 2 3

Register indirect with increment Register LDD 2, X+ 2 3

Memory direct (EXT) Register LDD var1 3 3

Register indirect with index (IDX2) Register LDD var1, X 4 4

Memory indirect with index ([IDX2]) Register LDD [var1, X] 4 6

Register Register TFR D, X 2 1

Register indirect Register indirect MOVW 0, X, 0, Y 4 5

Memory direct Memory direct MOVW var1, var2 6 6

Direct JMP address 3 3

Direct JSR address

JSR [address]

3

3

4

7

Implicit RTS 1 5

Register implicit INX 1 1

Memory direct Register implicit ADDD var1 (16+16bit) 3 3

Register implicit Register implicit EMUL (16x16bit) 1 3

Register implicit Register implicit EDIV (32/16bit) 1 12

*1
var1, var2 … 16bit variables in internal ROM/RAM *2 CPU clock period 42ns @ fBUSCLK=24MHz

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.1

Chapter 3

Peripherals, Digital, Analog and Timed Input/Output, Interrupts

3.1 Digital Input and Output .. 2

3.2 Interrupts .. 4

3.3 Timer Unit .. 13

3.4 Analog to Digital Conversion .. 25

3.5 PWM Outputs .. 32

3.6 Serial Interface ... 40

3.7 Miscellaneous Interfaces SPI, I²C, CAN .. 47

Appendix A: Assembler Version of C Sample Programs 53

Appendix B: Clock Generator and Clock Divider Settings 60

3.1 Digital Input and Output

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.2

3.1 Digital Input and Output (General Purpose Input/Output GPIO, see [3.3 and 3.10])

Circuit diagram of a single digital-input/output pin x.n
(DDRx.n = 1 Pin n of port X is configured as output, with
n=0…7 and x=A, B, E, H, J, K, M, P, S, T)

• The CPU has several groups of 8
digital inputs/outputs (ports),
which can be configured bitwise
via the group’s Data Direction
Register DDRx as input or output.

• Reading and writing of port pins is

done via data registers PTx or
PORTx via MOVB instructions
(8bit) or via BSET/BCLR to write
and BRCLR/BRTST to test single
pins.

• Via register RDRx (Reduced Driv-

er) the driver signal strength of
the port pin can be reduced, to
improve the EMC properties.

• Via PPSx (Port Polarity Select) a

pull-up or pull-down resistor can
be selected and with PERx (Pull
Enable Register) these resistors
will be enabled.

3.1 Digital Input and Output

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.3

Most ports have alternative functions, e.g. ports A and B may be used as digital inputs/out-
puts or as external multiplex address/data bus. After Reset all ports are digital inputs. To use
a port pin as output, configure it in the port’s DDR register. If a port’s alternative function is
activated, the port (pin) can no longer be used as digital input/output:

Port x Data register/

Data direction

Notes/Restrictions May trig-

ger inter-

rupt

Alternative Function

A PORTA / DDRA Pull-Up resistors and driver strength only for
complete port, not bitwise (uses register PUCR
rather than PPSx and PERx, register RDRIV in-
stead of RDRx)

No

Multiplex
address/data bus

B PORTB / DDRB

E PORTE / DDRE Like PORTA; pins 0 and 1 only as inputs

No Control signals for
address data bus K PORTK / DDRK Like PORTA

H PTH / DDRH Yes SPI interface

J PTJ / DDRJ Only 4 bit (J.0, 1, 6, 7) available Yes CAN or I²C

M PTM / DDRM No CAN interface

P PTP / DDRP Yes PWM outputs
SPI interface

S PTS / DDRS No Serial interfaces SCI
and SPI

T PTT / DDRT No Timer input/output

Ports H, J and P may generate edge-triggered interrupts (see chapter 3.2).

Ports are configured in the initialization phase of a program. Afterwards, ports are accessed
via their data registers (see example BlinkingLED in chapter 2.2).

For port usage on Dragon12 boards see chapter 2.1 and [3.11].

3.2 Interrupts

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.4

3.2 Interrupts

Problem: Synchronize a program to an external event

e.g. a program, which shall react when a button is pressed

Handle
Button

no

yes

Read Button's
Digital Input

Button
pressed?

Wait
Loop

• Periodically reading the input signal

(Polling) in a loop

Handle other
problem

Peripheral
(Digital Input)

signals:
Button pressed

→ Interrupt

Return to
interrupted
program

Handle button

Interrupt-Service-Routine

• Handling another problem (task) while waiting
for the event

• Peripheral hardware signals the Interrupt to
the CPU, when the button is pressed

• CPU interrupts the current task, handles the in-
terrupt in an Interrupt-Service-Routine ISR
and returns to the interrupted task again

3.2 Interrupts

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.5

Interrupt Handling Details:

Instruct. X+1

Interrupt
Event

Current
Program

current instruction
will be completed

if interrupts are
enabled

(Bit I=0 im CCR)

Save all CPU registers
to stack

Disable interrupts
(Bit I=1 im CCR)

Get address of ISR
(Interrupt-Vector) from
Interrupt-Vector-Table

--> PC

CPU-Execution Unit
Hardware

Instruction Y

RTI

Interrupt
Service
Routine

. . .

Restore all CPU
registers from stack

Enable interrupts
(Bit I=0 im CCR)

Instruction X

. . .

. . .

if interrupts
are disabled

(Bit I=1 im CCR)

Return to
interrupted
program

Reset
Peripheral

Interrupt-Flag

if interrupt
enabled in
peripheral

Requirements for an interrupt based program:

• the interrupt mask bit I in CCR must have been cleared (global interrupt enable)

• the interrupt vector table (see next page) must have an entry of the ISR address

• the peripheral must be configured to trigger an interrupt (peripheral Interrupt Enable IE)

• the Interrupt Flag IF of the peripheral must be reset at the end of the ISR.

3.2 Interrupts

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.6

Interrupt-Vector-Table (selected interrupts only, for full table see [3.2])

No. Address Usage Maskable

0 $FFFE Reset No
*1

.

2 $FFFA COP: Watchdog interrupt (Computer Operating not Properly) Yes

3 $FFF8 TRAP: Unimplemented opcode No
*1

4 $FFF6 SWI: Software interrupt, called via instruction SWI No
*1

5 $FFF4 XIRQ: External, non-maskable interrupt request signal No
*2

6 $FFF2 IRQ: External interrupt request signal Yes

7 $FFF0 RTI: Real Time Interrupt Ja

.

8 $FFEE Timer channel 0 Yes

.

15 $FFE0 Timer channel 7 Yes

.

20 $FFD6 SCI0: First serial interface Yes

21 $FFD4 SCI1: Second serial interface Yes

22 $FFD2 ATD0: Analog To Digital converter Yes

.

25 $FFCC PTH: Digital input port H Yes

.

127

*1

„Non-maskable“ interrupts are independent from interrupt mask bit I in CCR.
*2

 Input XIRQ can be disabled via mask bit X in CCR.

3.2 Interrupts

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.7

Interrupt Sources

• CPU reset triggered by an external signal, the watchdog or clock generator monitoring.
These events use the interrupt-vector-table, but are no real interrupts, because they re-
start the CPU and do not return to the interrupted program.

• Hardware interrupts: Most peripherals can generate interrupts

• Software interrupt: Triggered by SWI instruction (used by debugger monitor program)

• Exceptions (traps): Triggered by some errors, e.g. trying to execute an undefined opcode.

Interrupt Priorities

• If several interrupt events do occur simultaneously, the ISRs will be executed in the order
of their entries in the interrupt vector table with lowest number first, e.g. RTI before timer
channel 0.

• Via register HPRIO the priority of one of the ISRs may be increased (not used in the lab).
Other processors, e.g. x86, allow to change more priorities.

• If during an ISR other interrupt events shall be handled immediately, the interrupt mask
can be cleared via the CLI instruction (nested-interrupts, not recommended)

• For each interrupt source, the latest interrupt event remains stored, till the interrupt flag in
the associated peripheral is reset.

Communication between Interrupt Service Routines and other parts of a program

• Interrupt service routines are called by hardware asynchronously to other parts of a pro-
gram. So an ISR does not have any call and return parameters (with the exception of SWI). If
data exchange is required, global variables must be used.

3.2 Interrupts

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.8

Example in C: (CodeWarrior project ButtonInterrupt.mcp)

• Trigger an interrupt by pressing button SW5 on the Dragon12 board
 (positive edge on CPU port H, bit 0)

void main(void)

{ EnableInterrupts; //Allow interrupts
 . . .
 DDRB = 0xFF; //Port B.7...0 as outputs (LEDs)

 PORTB = 0x55; //Turn on every second LED
 DDRH = 0x00; //Configure port H.7…0 as inputs

 PPSH = 0x01; //'1' trigger interrupt on positive slope on H.0

 PIEH = 0x01; //'1' enables interrupt for input port H.0

 for(;;) { } //Endless loop

}

interrupt 25 void ButtonISR(void) //ISR for interrupt 25 (port H interrupt)

{ PORTB = ~PORTB; //Toggle LEDs on Port B

 PIFH = 0x01; //’1’ resets the interrupt flag

}
Important registers for port H (see [3.3], chapter 3.3.5):
DDRH … Data Direction Register
PTH … Data register
PIEH … Port Interrupt Enable register (1=enable, configured bitwise)
PPSH … Port Polarity Select register (0=negative edge, 1=positive edge)
PIFH … Port Interrupt Flag register (1=interrupt triggered, reset by writing a 1)

Note: In a practical application, buttons always must be debounced. This should be done by polling rather than interrupts.

3.2 Interrupts

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.9

Example in HCS12 Assembler: (CodeWarrior project ButtonInterruptAsm.mcp)

• Requirements are the same as for the example in C

. . .

.vect: SECTION ; ROM: Interrupt vector section ----------------

 ORG $FFCC

 DC.W isr25 ; Interrupt vector for interrupt 25 (Port H)

.init: SECTION ; ROM: Code section ----------------------------

main: ; Begin of the program

Entry: LDS #__SEG_END_SSTACK ; Initialize stack pointer

 CLI ; Enable interrupts

 . . .

 MOVB #$FF, DDRB ; $FF -> DDRB: Port B.7...0 as outputs (LEDs)

 MOVB #$55, PORTB ; $55 -> PORTB: Turn on every other LED

 MOVB #$00, DDRH ; Configure port H.7...0 as inputs

 MOVB #$01, PPSH ; '1' trigger interrupt on positive slope

 MOVB #$01, PIEH ; '1' enables interrupt for input port H.0

loop: BRA loop ; Endless loop

; Interrupt Service Routine for interrupt 25

isr25: COM PORTB ; Complement Port B: Toggle LEDs

 BSET PIFH, #1 ; Clear interrupt flag

 RTI ; Return from interrupt service routine (not RTS)

Note: In a practical application, buttons always must be debounced. This should be done by polling rather than interrupts.

3.2 Interrupts

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.10

CPU State after Reset

• PC loaded with reset interrupt vector (points to Dragon12 board’s debugger monitor pro-
gram, which initializes the CPU’s clock generator)

• I=X=S=1 in CCR register, i.e. interrupts masked (disabled), STOP instruction disabled

• Other registers, e.g. SP (!) undefined

• Peripherals turned off, i.e. the clock generator’s PLL, the watchdog (COP) or the Real-time
Timer (RTI)

• All digital input/output pins configured as inputs

Clock Generator CRG and periodical Real Time Interrupts RTI

• Clock Signals (see Clock & Reset Generator Module CRG [3.4] and Appendix)

The HCS12 has a complex programmable clock generator, which is configured by the de-
bugger’s monitoring program on the Dragon12 board as follows:

Quartz
Oscillator

OSCCLK
4 MHz *1

Phased Locked
Loop PLL

Clock
Multi

plication
x 12

Clock
Divider

% 2

PLLCLK
48 MHz

BUSCLK
24 MHz

Real Time Timer RTI
Watchdog COP

. . .

CPU-Kernel
will be divided by 2 in CPU

CPUCLK 24 MHz

SYSCLK

Peripherals
e.g. Timer, ADC,

Serial Interface, ...

*1 Note:
 OSCCLK
Dragon12:
 4MHz
Dragon12Plus:
 8MHz

3.2 Interrupts

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.11

• Real Time Interrupt RTI (see Clock & Reset Generator Module CRG [3.4])
Periodical interrupts can be generated using the Real Time Interrupt unit:

OSCCLK
4 MHz *1

Fixed
Clock Divider

% 29 % 2X % (Y+1)

Programable
Clock Divider 1

Programable
Clock Divider 2

RTI
Interrupt

Interrupt Enable
RTIE = Bit 7 in Register CRGINT

&

*1 Dragon12: 4MHz
 Dragon12 Plus: 8MHz

The interrupt frequency is defined via clock divider settings X and Y:

 Bit 7 6 5 4 3 2 1 0

fRTI =
fOSCCLK

2
9+X

 · (Y+1)

Register RTICTL 0 X (3bit) Y (4bit)

Y=0…15, X=1…7 (Note: X = 000B will disable the interrupt generation)

Register CRGINT: To enable the RTI interrupt (Real Time Interrupt Enable RTIE), set bit 7 in
register CRGINT to 1. The other bits in this register must not be changed!

Register CRGFLG: At the end of the interrupt service routine the RTI Interrupt Flag RTIF, i.e.
bit 7 in register CRGFLG, must be reset by writing a 1. The other bits in this register must not
be changed!

3.2 Interrupts

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.12

Frequency range of the RTI interrupt

 fRTI =
fOSCCLK

2
9+X

 · (Y+1)
 with X=1…7, Y=0…15 and fOSCCLK = 4 MHz

Maximum: smallest divider values Xmin = 1 (not 0!), Ymin = 0 RTICTL = 10H

fRTI, max =
4 MHz

2
9+1

 · (0+1)
 =

1
256µs

 ≈ 3,9 kHz

Minimum: biggest divider values Xmax=7, Ymax=15 RTICTL = 7FH

fRTI, min =
4 MHz

2
9+7

 · (15+1)
 =

1
262ms

 ≈ 3,8 Hz

see also table on last page 3.61

3.3 Timer Unit

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.13

3.3 Timer Unit (see Enhanced Capture Timer ECT [3.5])

Every modern microcontroller has a powerful timer unit for tasks like

• measuring time differences/timeouts in programs

• measuring time instants of external events, pulse periods and pulse lengths of input signals
(Input Capture Mode)

• generation of interrupts and output signals at programmable times (Output Compare
Mode)

Free running
16bit Up Counter

TCNT

Clock
Divider

fTCNTfBUSCLK

16bit
Timer

Register

TCx

x=0,1,...,7

Compare
TCNT

==TCx ?

TSCR2

Trigger

Input
Event

Output
Event

Port
Pin T.x

TCTL3+TCTL4

TCTL1+TCTL2

8 Channels

C
P

U
 A

d
d
re

s
s
-D

a
ta

 B
u

s

The HCS12 timer unit
consists of

• a free-running 16bit

counter TCNT with
programmable clock
frequency fTCNT

• 8 channels, connect-
ed to Port T, which
can be used as in-
puts in Input Cap-
ture Mode or as out-
puts in Output Com-
pare Mode

3.3 Timer Unit

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.14

The Enhanced Capture Timer is a complex module with many configurable options. Only the
most important options will be described here. The description assumes that the CPU was re-
set and only differences to the default settings after reset will be described. For more infor-
mation see [3.5].

Configuration of the free-running 16bit Counter TCNT

• Control Registers

TSCR1
(8bit register)

Enable the timer unit
Bit 7 = 1 Enable
Bit 6…0 = 0 Default after reset

 TSCR2
(8bit register)

Set the timer clock frequency
Bit 7…3 = 0 Default after reset
Bit 2…0 Clock divider x

Clock frequency fTCNT =
1

TTCNT
 =

fBUSCLK

2
x

Dragon12 operates at fBUSCLK=24MHz.

For xmin= 0 the 16bit counter has

• a clock period TTCNT,min = 1/fTCNT,max = 42ns

• a counter period TP,min = 2
16

 · TTCNT,min = 2,7ms.

For xmax= 7 the 16bit counter has

• a clock period TTCNT,max = 1/fTCNT,min= 5,3µs

• a counter period TP,max = 2
16

· TTCNT,max = 350ms

The counter can be configured to generate an interrupt on counter overflow (not described here). In the associated
ISR overflow events can be counted by software, so that the counter can be extended to more than 16bit.

3.3 Timer Unit

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.15

Configuration of the 8 Timer Channels

• Control registers

TIOS
(8bit register)

Select Input Capture or Output Compare Mode for
each channel
Bit y = 1 Channel y in Output Compare Mode
(y=0,1,…,7) Default: y=0, i.e. Input Capture Mode

 TIE
(8bit register)

Interrupt Enable for each channel
Bit y = 1 Channel y does generate interrupts
(y=0,1,…,7) Default: y=0, i.e. no interrupt

Each channel has its own ISR, which will be called by its associat-
ed input or output event.

 TFLG1
(8bit register)

Interrupt Flag indicates an timer interrupt event
Bit y = 1 Channel y triggered an interrupt
(y=0,1,…,7) Must be reset in the ISR by writing a 1 to the
 channel’s bit in TFLG1.

• Additional configuration registers for Output Compare Mode

 Bit 7 6 5 4 3 2 1 0 Set the type of output
event:
00 … Output pin not used
 (timer used for inter-
 rupt generation only).
01 … Toggle output pin
10 … Clear output to 0
11 … Set output to 1

TCTL1 (8bit) Channel 7 Channel 6 Channel 5 Channel 4

TCTL2 (8bit) Channel 3 Channel 2 Channel 1 Channel 0

3.3 Timer Unit

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.16

• Additional configuration registers for Input Capture Mode

 Bit 7 6 5 4 3 2 1 0 Set the type of input trigger
event:
00 … Input not used
01 … Positive edge
10 … Negative edge
11 … Pos. & neg. edges

TCTL3 (8bit) Channel 7 Channel 6 Channel 5 Channel 4

TCTL4 (8bit) Channel 3 Channel 2 Channel 1 Channel 0

• Time-stamp registers for the 8 channels

• Channel 0

TC0
(16bit register)

Software writes to this register in Output Compare
Mode to set the “time” (counter value), when the
channel’s next output event shall be triggered.

Software reads this register in Input Capture Mode to
get the “time” (counter value) of the channel’s last
input event.

 . . .

. . .

• Channel 7 TC7
(16bit register)

As the timer clock frequency is high, the timer value TCNT changes fast and overflows period-
ically. Software therefore

• must read TCNT with a single 16bit instruction, e.g. MOVW (never use two sequential 8bit
instructions MOVB, because the timer value may change before the second byte is read).

• When using TCNT to measure time, the time between events must never be greater than

one counter period, i.e. 216/fTCNT. In this case, the CPU’s mod 2
16

-arithmetic will handle tim-
er overflows automatically, otherwise overflows must be counted and handled by software.

3.3 Timer Unit

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.17

Example: Program Code for Run-time Measurement (CodeWarrior project timer1C.mcp)

Configure Timer
(simple counter operation)

Program code
to be measured

Read Counter
startTime = TCNT

Read Counter
stopTime = TCNT

Runtime =
stopTime - startTime

// --- Global variables -----------------------------

unsigned int startTime; // TCNT at start

unsigned int stopTime; // TCNT at end

unsigned long deltaTime; // stopTime-startTime

void main(void)

{ EnableInterrupts; // Needed for debugger

//--- Initialize timer --------------------------------

 TSCR1 = TSCR1 | 0x80; // Enable timer module

 TSCR2 = 0x07; // Timer clock period

 2
7
/24MHz=5.3µs

 startTime = TCNT; // Save start time

//--- Program code to be measured ----------

 . . .

//--- Compute run time --------------------------------

 stopTime = TCNT; // Save stop time

 deltaTime = stopTime - startTime; // Run time (in

 clock periods)

 deltaTime = deltaTime * 128/24; // Convert to µs

} Assembler version see appendix A

Note: Resolution is 1 timer clock period, i.e. 5.3µs measurement range: 1 counter period, i.e. max. 350ms

A smaller clock period will increase measurement resolution, but will reduce the measurement range.

3.3 Timer Unit

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.18

Example: Measure the Period of a Pulse Signal in Input Capture Mode

The speed of a bicycle is measured via a
pulse signal:

• The pulse signal is generated via a coil S

and a rotating magnet M.

• When the magnet passes the coil, a voltage

impulse is induced.

• A comparator converts the analog voltage

impulses into a digital pulse signal.

• Wheel speed n ~
1

impuls period T

• With the known wheel radius r the bicycle’s

speed v = 2 π · r · n can be calculated

A similar arrangement with a tooth wheel and
an Hall sensor, which generate ~ 60 pulses
per revolution, is used to measure wheel
speeds of cars in ABS/ESP systems.

3.3 Timer Unit

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.19

Code sample: (CodeWarrior project timer3C.mcp)
Pulse signal connected to port T.7 (used as input) with frequency range 10Hz … 10kHz

Main program:

Configure timer
(ch. 7 Input-Capture)

. . .

//--- Global variables ---------------------

unsigned int signalPeriod = 0; // Signal period in TCNT

 clock periods

unsigned int lastTC7 = 0; // TC7 at last inp event

void main(void)

{ EnableInterrupts; // Global interrupt enable

 . . . (required, not only for debugger!)

//--- Initialize timer --------------------------------

 TSCR1 = TSCR1 | 0x80; // Enable timer module

 TSCR2 = 0x07; // Timer clock period 2^7 / 24MHz

 // = 5.3µs resol,clk period 350ms

 TIOS = TIOS & ~0x80; // Timer ch. 7: input capture

 TCTL3 = 0x40; // Trigger ch. 7 on rising edge

 TIE = TIE | 0x80; // Enable interrupt for ch. 7

 for(;;) { } // Infinite loop

}

3.3 Timer Unit

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.20

lastTC7 = TC7

Reset interrupt flag
for timer ch. 7

ISR für Timer Kanal 7

RTI

Period
= TC7 - lastTC7

ISR for timer ch. 7

INT 15

//--- Interrupt service routine for timer channel 7 ---

void interrupt 15 timer7Isr(void)

{

 unsigned int temp = TC7; // Get current TC7

 signalPeriod = TC7 - lastTC7;// Compute signalPeriod

 (in timer clock periods)

 lastTC7 = temp; // Save current TC7

 TFLG1 = TFLG1 | 0x80; // Reset ch 7 interrupt flag

}

current event
stored

TC7 = TCNT

period of input signal
= TC7neu - TC7

next event
stored

TC7neu = TCNTneu

"time" as integer multiple of counter clock period TCNT

input Port T.7

time t
represented

by counter TCNT

3.3 Timer Unit

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.21

Example:
Generate the driving pulse signal for the spark plugs of a combustion engine in Output
Compare Mode

Battery 12V

Ignition "Coil" Spark Plugu2

Driver Transistor

Driver Pulse
Signal uD

i1

t

uD

t

i1

t

u2 Ignition
Spark

Simplified

>10kV

t2t1

• The ignition spark is generated via the ignition “coil”.

• The ignition timing t2 (but also t1) must be controlled precisely, be-

cause they influence fuel efficiency and emissions Timing errors
< 1µs required.

3.3 Timer Unit

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.22

Code Example: (CodeWarrior project timer2C.mcp)

Driving the Dragon12 Beeper in Output-Compare Mode

A beeper (buzzer) on port T.5 (used as output) shall be driven by a 500Hz pulse signal with
1:1 duty cycle:

Main program:

Configure Timer
(Kanal 5 Output-Compare)

. . .

Set First Interrupt Event
 TC5=TCNT+Delay

#define DELAY EQU (24000/128) // Delay 1ms * 24Mhz / 2^7

void main(void)

{ EnableInterrupts; // Global interrupt enable

 . . .

//--- Initialize timer --------------------------------

 TSCR1 = TSCR1 | 0x80; // Enable timer module

 TSCR2 = 0x07; // Timer clock period 2
7
/ 24MHz

 TIOS = TIOS | 0x20; // Timer ch.5 as output compare

 TCTL1 = 0x04; // On timer event toggle output

 TC5 = TCNT + DELAY; // Set time of first event

 TIE = TIE | 0x20; // Enable interrupt for ch. 5

 for(;;) { } // Infinite loop

}

3.3 Timer Unit

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.23

ISR:

Next Interrupt Event
TC5=TC5+Delay

Reset Interrupt Flag
for Timer Ch. 5

ISR for Timer Ch. 5

INT 13

RTI

//--- Interrupt service routine for timer channel 5 ---

// Output port T.5 is toggled automatically, whenever

// this ISR is called

void interrupt 13 timer5Isr(void)

{

 TC5 = TC5 + DELAY; // Set timer for next event
 (Don’t use TCNT here to reduce jitter)

 TFLG1 = TFLG1 | 0x20; // Reset ch5 interrupt flag

}

time t
represented

by counter TCNT
current

output event
(interrupt) at

TCNT == TC5

delay = time to next
interrupt

next
output event
(Interrupt) at

TC5neu = TC5 + Delay

"time" as integer multiple of counter clock period TCNT

output Port T.5

By setting the bits in TCTL1 to 0, the output compare mode will trigger an ISR only at a pre-
defined time, but does not change the port pins output signal.

3.3 Timer Unit

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.24

Interaction between Hardware and Software in Output Compare Mode:

t
counter period 216 ·TTCNT

Counter
TCNT

TCx
(1st value)

1st timer event
at TCNT=TCx

ISR writes
new value to TCx

TCx*
(2nd value)

2nd timer event
at TCNT=TCx*

TCx**
(3rd value)

3rd timer eEvent
at TCNT=TCx**

. . .

TEvent

0

65535

output signal on
port pin (HW)

output signal on
port pin (HW)

ISR writes
new value to TCx

Minimum and maximum time be-
tween timer events:

TTCNT << TISR < TEvent < 216 · TTCNT

with TISR = duration of the ISR

Note:

To generate times > 216 TTCNT , the timer can
be configured to generate an interrupt, when
the 16bit counter TCNT overflows:

• Timer Overflow Interrupt Enable:
 Register TSCR2 Bit 7 = 1

• Timer Overflow Interrupt Flag:
 Register TFLG2 Bit 7 = 1

• Interrupt Vector Table:
 Entry 16 @ address $FFDE

3.4 Analog to Digital Conversion

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.25

3.4 Analog to Digital Conversion (see Analog To Digital Converter ATD [3.8])

• The HCS12 microcontroller of the Dragon12 board provides two independent 10bit Ana-

log-to-Digital Converters ATD0 and ATD1.

• The converters use the successive approximation principle and have a Sample & Hold
unit at their input.

• the conversion time is 14 clocks (2 clocks for switching the input multiplexer + 2 clocks
for sampling + 10 clocks for the 10bit A/D-conversion) @ 2MHz clock, i.e. 7µs.

• Via the input multiplexer each converter can select one of 8 analog input channels:
ATD0: Port PAD.07 … 00, ATD1: Port PAD.15…08.

Analog
Inputs

PAD00

PAD07

PAD01

Input
Multiplexer

Sample
&

Hold

A

D

Result
Register
ATD0DR0

...

Sample
Input

Control
Register
ATD0CTL

2...5

Status
Register

ATD0STAT0

Start of Conversion SOC

Conversion Complete CCF
(End of Conversion)

Channel Select

C
P

U
 A

d
d
re

s
s
-/

D
a
ta

 B
u

s

3.4 Analog to Digital Conversion

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.26

Both converters ATD0 and ATD1 have the same set of registers and several operating modes.
Here only the major options are discussed, for special modes see [3.8].

At program start a one-time configuration is done via the following control registers:

• Control Register
(all register 8bit, if not stated
otherwise)

ATD0CTL2 Enable the ADC and interrupts
Bit 7 = 1 Enable the ADC module
Bit 6 = 1 Automatic resetting of the CCF flag
 when reading the result registers
Bit 5 … 2=0000B Miscellaneous options, don’t change

Bit 1 = 1 Enable interrupt after conversion completes
Bit 0 = 1 Interrupt Flag, indicates an interrupt event,
 must be reset by writing a 1 into this bit

 ATD0CTL3 Conversion sequence
Bit 7=0 Default
Bit 6 … 3 Sequence Count SC, see below
Bit 2 … 0 = 000B Default

 ATD0CTL4 Resolution and conversion speed
Bit 7 = 0 10bit resolution (Bit 7 = 1 … 8bit)
Bit 6,5=00B Sampling length 2 clocks (don’t change)

Bit 4..0=00101B Clock divider fADC=2MHz @ fBUSCLK=24MHz

 (maximum clock frequency)

 ATD0CTL5 Data format and start of conversion
Bit 7…5 = 100B Result in result register right-adjusted

 and unsigned, i.e. 0V = 0D, 5V = 1023D

 Conversion start triggered by software
Bit 4 Multichannel conversion MULT, see below
Bit 3 = 0 Default
Bit 2 … 0 Channel select code C, see below

3.4 Analog to Digital Conversion

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.27

If the conversion is complete and the result available, can be polled via

• Status Register ATD0STAT0 Bit 7 = 1 End of conversion EOC

Bit 6 … 0 Other status info, not described here

The conversion result can be read from the 16bit result register ATD0DR0 (and in registers
ATD0DR1, …, ATD0DR7, see below).

Operating modes and start of a conversion:

A. Single measurement of a single channel

Required setting in ATD0CTL36…3: SC=0001B single measurement

in ATD0CTL54: MULT=0 no multi-channel operation

in ATD0CTL52..0: C = 0, 1, …, 7 select channel to measure

Start of conversion when writing ATD0CTL5

End of conversion ATD0STAT07=1 Poll status register or configure interrupt

Conversion result in ATD0DR0 (always, no matter which channel was selected)

B. Multiple measurements of a single channel

Settings see A., except in ATD0CTL36…3: SC= 1, 2, …, 8 number of measurements

Conversion result: in ATD0DR0, ATD0DR1, … (first result, second result, …)

3.4 Analog to Digital Conversion

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.28

C. Single measurement of multiple channels (channels in ascending order)

Settings see A., except in ATD0CTL36…3: SC= 1, 2, …, 8 number of channels

in ATD0CTL54: MULT=1 multi-channel mode

 in ATD0CTL52…0: C = 0, 1, …, 7 first channel to be measured

 E.g.: when starting at C=6 with SC=4, channels 6, 7, 0 and 1 will be measured.

Conversion result: in ATD0DR0, ATD0DR1, … (first channel, second channel, …)

Conversion
complete ? nein

ja

Configure ADC
(ATD0CTL2 ... 4)

Start conversion
(write ATD0CTL5)

Read and
process result

Polling Mode

Configure ADC
(ATD0CTL2 ... 4)

Start first conversion
(ATD0CTL5 schreiben)

Handle another
problem

Read and
process result

Reset ADC
Interrupt Flag

Start next conversion
(write ATD0CTL5)

ADC
Interrupt

RTI

Interrupt Mode

3.4 Analog to Digital Conversion

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.29

Example: Single Polling of Channel 7

main: . . .

MOVB #$C0, ATD0CTL2 ; Enable ATD, no interrupt

 MOVB #$08, ATD0CTL3 ; Single conversion only

 MOVB #$05, ATD0CTL4 ; 10bit, 2MHz ATD0 clock

 MOVB #$87, ATD0CTL5 ; Start conversion on channel 7

wait1: BRCLR ATD0STAT0, #$80, wait1 ; Wait for End of Conversion (EOC)

 LDD ATD0DR0 ; Read conversion result register D

 . . .

3.4 Analog to Digital Conversion

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.30

Example: (CodeWarrior project ADCInterruptC.mcp)

• Measure the analog signal on channel 7 (connected to a poti on Dragon12 boards)
• Output the arithmetic mean of 2 measurement values (in binary) to the LEDs on port B

. . .

//--- Global variables ---------------------

unsigned int value; // Measurement value

void main(void)

{ EnableInterrupts; // Enable interrupts

//--- Initialize ATD0 ---

 ATD0CTL2 = 0b11000010; // Enable ATD0, enable interrupt

 ATD0CTL3 = 0b00100000; // Sequence: 4 measurements

 ATD0CTL4 = 0b00000101; // 10bit, 2MHz ATD0 clock

 ATD0CTL5 = 0b10000111; // Start first measurement on single channel 7

 for(;;) // Infinite loop

 {

 // Show upper 8bits of the 10bit measurement value on LEDs 7...0

 PORTB = value >> 2;

 }

}

3.4 Analog to Digital Conversion

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.31

// --- ADC interrupt service routine -----------------------

void interrupt 22 adcISR(void)

{

 // Read the result registers and compute average of 4 measurements

 value = (ATD0DR0 + ATD0DR1 + ATD0DR2 + ATD0DR3) >> 2;

 ATD0CTL2 = ATD0CTL2 | 0x01; // Reset interrupt flag (bit 0 in ATD0CTL2)

 ATD0CTL5 = 0b10000111; // Start next measurement on single channel 7

}

Note: Result registers ATD0DR0, … must be read (to automatically reset the CCF flag), before starting the next
conversion.

Instead of starting the A/D conversion via software (by writing to ATD0CTL5), the HCS12 allows other modes to trig-
ger a conversion:

• Automatic Triggering: In this mode (scan mode or free running mode, activated via bit 5=1 in register ATD0CTL5)
software only triggers the first conversion. All following conversions will start automatically after end of the previ-
ous conversion. Result registers can be read any time and always provide the latest result. However, in this mode
sampling is asynchronous, i.e. the user program has no control of the signal sampling period.

• Hardware Triggering: Rather than by software, a conversion will be started by an external hardware signal (a ris-
ing or falling edge of an pulse signal at channel 7 of the ADC).

3.5 PWM Outputs

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.32

3.5 PWM Outputs (see Pulse-Width-Modulation Unit PWM [3.7])

Purpose:

• Generation of pulse signals with programmable period TP or pulse length(width) TD

(D … Duty Cycle)

u
PWM

(t)
U
H

t
T

D
=DTY·T

T
P
=PER·T

U
RC

u
RC
(t)

u
PWM

(t) u
RC

R C

0

• Pseudo digital-to-analog conversion: Arithmetic mean URC ≈ UPWM = UH
TD

TP
 for RC >> TP

 (valid only if PWMPOL=1)

• After filtering the output via a RC or RL low pass filter (e.g. the coil of a DC motor or

 solenoid) control of servo motors, solenoids, lamps, …

• By changing TD and/or TP during run-time, the „analog” signal can be modulated (Pulse
Width or Pulse Frequency Modulation)

3.5 PWM Outputs

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.33

The HCS12 PWM module has 8 PWM output channels (Port P.7…0). TD and TP can be set indi-

vidually for each channel with a resolution of 8 bit:

• Register for Ch. x
(all registers 8bit)

PWMPERx Period TP as multiple of the clock period Tx (for maxi-

mum resolution use PWMPER=255)

(x=0,…,7) PWMDTYx Length of phase TD as multiple of the clock period Tx

(Make sure PWMDTYx < PWMPERx)

 PWMCNTx Counter register of PWM channel x
(Clear to 0 to restart the PWM signal. Automatically done by re-
set, so normally not required).

There are three 8bit control registers with one bit per channel:

• Common

Control Registers
 (1bit per channel)

PWME Enable channel:
Set a channel’s bit to 1, to start its PWM signal.
Otherwise, the port pin can be used as normal digi-
tal input/output.
Enable only, after all PWM channels including clock
dividers have been configured.

 PWMPOL PWM signal polarity:
When a channel’s bit is set to 1, the PWM signal pe-
riod starts with the H phase, L otherwise.

3.5 PWM Outputs

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.34

 PWMCLK Selection of one of the clock signals TA/B or TSA/SB:
If a channel’s bit is set to 0, the channel uses the
fast clock TA / B, set to 1 for the slow clock TSA / SB

The PWM module has a total of 4 clock signals, paired in two groups. For each channel one
out of the two signals in a group can be selected via PWMCLK (see diagram on next page):

TA or TSA for PWM channels 0, 1, 4, 5 TB or TSB for PWM channels 2, 3, 6, 7

These clock signals are generated via clock dividers from the CPU’s clock BUSCLK. The clock
signals are programmed via clock dividers xA or xB and ySA or ySB:

TA = 2
x
A · TBUSCLK

 TB = 2
x
B · TBUSCLK

TSA = 2 · ySA · TA TSB = 2 · ySB · TB
Dragon12 uses TBUSCLK=1/fBUSCLK=1/24MHz. The clock dividers xA, xB, ySA and ySB are set via

the following registers:

 Bit 7 6 5 4 3 2 1 0

xA, xB = 0, 1,…, 7 Register PWMPRCLK 0 xB (3bit) 0 xA (3bit)

Register PWMSCLA ySA (8bit) ySA, ySB = 1, 2,…, 256

Register PWMSCLB ySB (8bit) y=0 is interpreted as y=256

The PWM module has several options and operation modes, which are not discussed here. These options are turned
off automatically after reset.

zimmerma
Rechteck

3.5 PWM Outputs

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.35

Structure of the PWM Module

Divider
% 2 x

A

Divider
% 2·ySA

1 / TSA1 / TAfBUSCLK = 1 / TBUSCLK

PWM Channels 0, 1, 4, 5Clock Dividers A and SA

Divider
% 2 x

B

Divider
% 2·ySB

1 / TSB1 / TB

PWM Channels 2, 3, 6, 7Clock Dividers B and SB

PWMCLKPWMPRCLK

PWMSCLA

PWMSCLB

PWM
Signal

PP.5
PP.4
PP.1
PP.0

1 / TCLK, 0

PWM Channel 0

PWMPER0
PWMDTY0

PWM
Signal

PP.7
PP.6
PP.3
PP.2

1 / TCLK, 2

PWM Channel 2

PWMPER2
PWMDTY2

• 2 clock divider groups µ=A, B with 2 clocks each: Tµ = 2

x
µ · TBUSCLK and TSµ = 2 · ySµ · Tµ

• Channels ν = 0, 1, 4, 5 use clock TCLKν = TA or TSA dependent on the setting of PWMCLK.ν

• Channels ν = 2, 3, 6, 7 use clock TCLKν = TB or TSB dependent on the setting of PWMCLK.ν

• Period of the pulse signal of channel ν is TPν = PWMPERν · TCLKν
• Length of the H-phase (if PWMPOL.ν=1) or the L-phase (if PWMPOL.ν=0) for channel ν

TDν = PWMDTYν · TCLKν

3.5 PWM Outputs

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.36

Operation of a PWM channel

PWMPER

PWMDTY

if PWMCNT==PWMPER
reset counter PWMCNT

if PWMCNT==PWMDTY
toggle output

Counter
PWMCNT

t

t

Output
Signal
PP.x

TD= PWMDTY · T

TP= PWMPER · T

For PWMPOL.x=1
(otherwise output will be inverted)

0

T
(bzw. TS)

3.5 PWM Outputs

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.37

PWM Signal Frequency Range

What are the minimum and the maximum frequencies of a PWM signal on a Dragon12 board?
The duty cycle TD / TP shall be configured for full 8bit resolution.

• 8bit duty cycle resolution requires: PWMPER = 255

• Maximum PWM frequency, if TA/B is used with xA/B= 0

 TPmin = 255 · TA/Bmin = 255 · 2
0
 · 1/24MHz = 11µs fPmax = 1/Tpmin = 94kHz

• Minimum PWM frequency, if TSA/SB is used with xA/B=7 and ySA/SB=256

 TPmax = 255 · TSA/SBmax = 255 · 2
7
 · 2 · 256 · 1/24MHz = 700ms fPmin = 1/TPmax = 1,4Hz

3.5 PWM Outputs

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.38

Example: Which PWM signals are generated with the following configuration?
 (CodeWarrior project PWM1.mcp)

MOVB #$80, PWMCLK

Channel 7 uses clock TSB , ch. 6 uses clock TB

MOVB #$10, PWMPRCLK

Divider xB = 1 Clock period TB= 2
1
 · 1/24MHz ≈ 83,3ns

MOVB #$02, PWMSCLB

Divider ySB= 2 Clock period TSB= 2 · 2 · 83,3ns ≈ 333ns

MOVB #$40, PWMPOL

Ch. 7 start with L-phase, ch. 6 starts with H-phase

MOVB #255, PWMPER6

Ch. 6: PWM signal period TP6= 255 · 83,3ns ≈ 21µs

MOVB #128, PWMDTY6

Ch. 6: PWM signal H-phase TD6=128·83,3ns ≈ 10,5µs = 50% · TP6

MOVB #255, PWMPER7

Ch. 7: PWM signal period TP1= 255·333ns ≈ 84µs

MOVB #32, PWMDTY7

Ch. 7: PWM signal L-phase TD7= 32·333ns ≈ 10.5µs =12,5% · TP7

BSET PWME,#$C0 Enable PWM ch. 6 and 7, i.e. turn on the pulse signals

3.5 PWM Outputs

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.39

Timing Diagram:

Ch. 7

0

1

t10,5µs

Ch. 6
0

1

t10,5µs 21µs

21µs

42µs 63µs 84µs

42µs 63µs 84µs

TD6=10,5µs

TP6=21µs

TD7=10,5µs

TP7=84µs

Note:
The PWM can be configured in such a way, that channels 0+1, 2+3, 4+5, 6+7 are combined into four PWM-channels.
Thus the duty cycle resolution can be doubled to 16bit.

Rather than starting with the L- (or H-phase), the PWM signal can be generated symmetrically within its period (Cen-

ter Aligned).

3.6 Serial Interface

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.40

3.6 Serial Interface (see Serial Communications Interface SCI [3.6])

• Simple full-duplex communication between two computers:

RXD

TXD

GND

RXD

TXD

GND

2

3

5

2

3

5

Subminiatur D-9 Connector Pins

• Data transfer is byte-wise („Character“). The communication line is at 1 when idle. Each

character begins with a Start Bit, which is always 0.

• A character typically consists of 8 Data Bits, beginning with the LSB.

• Optionally followed by a Parity Bit (even or uneven parity of the 8 data bits).

• The character transmission ends with a Stop Bit (always 1). This level remains constant,
till the next character transmission starts (transmission line idle).

TBit (Empfänger) Abtastung auf der Empfängerseite in Bit-Mitte
 -> Zulässige Taktabweichung zwischen Sender und Empfänger 10·|TBit,Sender-TBit,Empfänger| < 0,5·TBit -> 5%

. . .

t

TBit,(Sender)

 Start

 Bit

always 0

 8 Data bits (0 or 1)

optional plus 1 Parity Bit

D0 D1 ...

 Stop

 Bit

always 1

Idle

(Pause)

T
Character

1 Character Next Character

...

...

Idle

(Pause)

Baud rate = Bit rate

fbit =
1

Tbit

Standardized bit rates 9.6, 19.2,
38,4, …, 115.2 kbit/s.

Non-standardized faster bit rates
possible.

3.6 Serial Interface

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.41

• Sender and receiver must use the same bit rate and the same character format (e.g. 8N1 =
8 data bits, no parity, 1 stop bit). Sender and receiver do not have a common clock signal.
Due to slightly different clock frequencies (asynchronous data transmission), only small bit
rates are possible.

• The hardware unit, which transmits a single character automatically, is called a UART Uni-
versal Asynchronous Receiver and Transmitter or SCI Serial Communication Inter-
face. If software writes a character into the transmit register of the UART, start, data and
stop bits are shifted out to the receiver by the hardware. When a character has been re-
ceived, software must read it from the UART’s receive register. The code structure for data
transmission in Polling Mode is as follows:

Send register
free ? no

yes

Write character to
send register

next character

Receive register
full ? no

yes

Read character from
receive register

Send character Receive character

next character

3.6 Serial Interface

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.42

• Before writing a character into the transmission register, the software must make sure,

that it does not overwrite the previous character. When reading a character from the re-
ceive register, the software must make sure, that it does not read a character which it al-
ready read before. Rather than polling the status register, an interrupt may be used. The
interrupt does signal, when a character has been received (Receive Interrupt, used by
most programs, because there may be long pauses between characters) and/or that the
transmission register is free again, when a character has been sent (Transmit Interrupt,
may or may not be used).

Send character

Write 1st character to
send register

Handle other
problem

Write next character
to transmit register

Transmit
Interrupt

RTI
Continue

. . .

Receive character

Handle other
problem

Receive
Interrupt

RTI
Contine

. . .

Handle
character

Read character from
receive registerTransmit ISR

 Receive ISR

3.6 Serial Interface

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.43

The HCS12 of the Dragon12 board has two UARTs SCI0 and SCI1. SCI0 is used for the de-
bugger communication. SCI1 is free for user programs, e.g. to communicate with a terminal
program (Hyperterminal or terminal-component of the HCS12 debugger) running on a PC.

Each serial interface has 3 configuration registers, which must be configured once:

• Baud Rate Register
(x=0 for SCI0, x=1 for SCI1)

SCIxBD

(16bit Register!)

Clock divider

SCIxBD =
fBUSCLK

16 · fbit

 (Dragon12 @ fBUSCLK=24MHz)

• Control Register 1

SCIxCR1

(8bit Register)

Default after reset: 8N1 (8 data bits, no parity, 1 stop bit)

If parity is required:
 Bit 1=1 … Use parity bit
 Bit 0=1 … Uneven parity (0=odd parity)
 Bit 7…2 … Do not change

• Control Register 2

SCIxCR2

(8bit Register)

Sender and receiver control
 Bit 2 = 1 … Receiver Enable
 Bit 3 = 1 … Transmitter (Sender) Enable
 Bit 5 = 1 … Receive Interrupt Enable
 Bit 7 = 1 … Transmit Interrupt Enable
 Set other bits to 0

Send and receive interrupt use the same interrupt vector. If both
types of interrupt are enabled, the ISR must poll status register
SCIxSR1 to find out, why the interrupt was triggered.

3.6 Serial Interface

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.44

Sending and receiving uses the same data register:

• Data Register

SCIxDRL
(8bit Register)

If written: TX Data register (for transmission)
If read: RX Data register (for reception)

 SCIxDRH
(8bit Register)

Higher 8 bits of the data register, used only if the SCI is config-
ured for character length > 8 bit

Polling the status of the serial interface:

• Status Register 1

SCIxSR1
(8bit Register)

Bit 7 = 1 … TX data register free
Bit 5 = 1 … RX data register full = new character

The other status bits indicate various error conditions, e.g.
Bit 3 = 1 … Receive register overwritten by next character, before
 the previous character was read.
Bit 0 = 1 … Parity error

• Status Register 2 SCIxSR2
(8bit Register)

Optional for operating modes not described here.

Due to implementation details of the hardware, the status register SCIxSR1 should always be
read, before reading or writing characters from/to the data register. This will automatically
clear the status flags for polling and interrupt mode.

3.6 Serial Interface

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.45

Example: Sending and receiving in Polling Mode (CodeWarrior project SerialPolling.mcp)

SCIxBD: EQU SCI1BD ; On Dragon12 use SCI1, in the simulator use SCI0

SCIxCR1:EQU SCI1CR1

CR: EQU $13

LF: EQU $10

. . .

.const:SECTION ; ROM: Constant data

message1: DC.B "Please enter a character", CR, LF, 0

. . .

.init: SECTION ; ROM: Code section

main:

. . . ; Initialize the serial interface
 MOVW #13, SCIxBD ; Set baud rate 115200 bit/sec

 MOVB #0, SCIxCR1 ; Default format 8 data bits, no parity, 1 stop bit

 MOVB #$0C,SCIxCR2 ; Enable receiver and transmitter, no interrupts

 LDX #message1 ; Send string to SCI

 JSR puts

 JSR getch ; Get character from SCI, returns character in B

 JSR putch ; Send character in B to SCI

 . . .

Sending and receiving is handled in subroutines puts, getch and putch.

3.6 Serial Interface

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.46

getch: ; --- Read a character from serial interface, return in B ------------

BRCLR SCIxSR1, #$20, getch ; Check 'Receive Data Flag' and wait

 LDAB SCIxDRL ; Read received character

 RTS ; ... and return in B

putch: ; --- Send a character in B to serial interface ---------------------

BRCLR SCIxSR1, #$80, putch ; Check 'Transmit Register Empty' and wait

 STAB SCIxDRL ; Send character

 RTS ; ... and return

puts: ; --- Send string to serial interface, X is a pointer to the string -

BRCLR SCIxSR1, #$80, puts ; Check 'Transmit Register Empty' and wait

 MOVB 0, X, SCIxDRL ; Send one character

 TST 1, X+ ; Check for end of the string …

 BNE puts ; if no, go to the next character

 RTS ; Send complete, return

A program version using interrupts rather than polling can be found in CodeWarrior project
serialInterrupt.mcp.

Note:
User programs must use the second serial interface SCI1 on the Dragon12 board, because
the first interface SCI0 is used by the debugger monitoring program. In the simulator, user
programs must use SCI0, because the simulator does not support SCI1.

To enable SCI1 on new Dragon12 boards, jumper J23 must be set to position RS232 (already done in our lab, but on
new boards factory setting is SCI1 disabled).

3.7 Miscellaneous Interfaces SPI, I²C, CAN

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.47

Serial Peripheral Interface SPI

• Serial interface between a microcontroller and peripheral ICs on a printed circuit board PCB

• Industry standard (Freescale and others) to connect serial EEPROMs or external A/D- and
D/A-converter ICs

• Basic principle: ‚Ring of shift registers’, clocked by SPI Master with up to 4 Mbit/s

• Byte wise data transmission clocked by master (1 byte Master Slave, at the same time 1
byte Slave Master), duplex communication, but SPI Slaves cannot start a transmission,
no acknowledge or error signaling from receiver to sender

• Master selects one slave per transmission via a separate “address line” per slave

Shift Register
8bit

1D Q
C1

Clock Generator
Digital
Output
Ports

MicrocontrollerSPI Master

Clock signal SCLK

Master In - Slave Out MISO data line

Master Out - Slave In
MOSI data line

Shift Register
8bit

1,2D Q
C1

Shift Register
8bit

1,2D Q
C1

SPI Slave 1 SPI Slave 2

G2 G2

Slave selection ("addressing" Slave Select /SS

. . .

3.7 Miscellaneous Interfaces SPI, I²C, CAN

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.48

Inter IC Bus I²C

• Serial interface between a microcontroller and peripheral ICs on a printed circuit board PCB

• Industry standard (Philips/NXP and others), originated in consumer electronics, e.g. TV sets

• Bidirectional Master-Slave system, clocked by Master with up to 400 kbit/s. Limited multi-
master capability.

• Messages with 7bit-address header to select one of the slaves and an arbitrary number of
data bytes. If data shall be sent from one of the slaves to the master or to other slaves,
the Master sends the slave’s address. Then the Master stops (but still outputs a clock sig-
nal) and the Slave continues with sending the data bytes.

• Each received byte is confirmed by the receiver with an Acknowledge Bit.

I2C
Media Access

Controller (MAC)

Microcontroller

I2C Master

Clock signal SCL

Bidirektional data line SDA

. . .

I2C
Media Access

Controller (MAC)

Microcontroller

I2C
Media Access

Controller (MAC)

Microcontroller

1D/Q 1D/Q 1D/Q

I2C Slave 1 I2C Slave 2

C1 C1C1

3.7 Miscellaneous Interfaces SPI, I²C, CAN

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.49

Controller Area Network CAN

• Serial interface of automotive and automation Electronic Control Units ECUs. Developed by

Bosch, industry standard ISO 11898, licensed to most microcontroller suppliers.

• Multi-Master bus with bit rates up to 1 Mbit/s, in cars typically fbit=500 kbit/s (High-
Speed-CAN) and fbit=100 kbit/s (Low-Speed-CAN) with different physical layers, uses two
wires with differential voltage signals. Due to arbitration (see below) the maximum bus

length L limited by bit rate fbit: L ≤ 40m · 1Mbit/s / fbit

CAN
Media Access

Controller (MAC)

Microcontroller

ECU 1

. . .

CAN
Transceiver (PHY)

TX RX

CAN-2-wire-bus
CAN_High - CAN_Low

CAN
Media Access

Controller (MAC)

Microcontroller

ECU 2

CAN
Transceiver (PHY)

TX RX

CAN
Media Access

Controller (MAC)

Microcontroller

ECU 3

CAN
Transceiver (PHY)

TX RX

• Messages with 11bit (or 29bit) Addresses (CAN Identifier), up to 8 data byte and CRC

check sum. Receiver acknowledges reception, automatic retransmission on errors.

• Content based rather than station base addressing: Receiving ECUs are selecting messages
based on their contents. This acceptance filtering via the CAN Identifier is done by hardware in
CAN communication controllers. (Note: Ethernet MAC addressing is station based).

3.7 Miscellaneous Interfaces SPI, I²C, CAN

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.50

• The CAN Identifier is additionally used for message arbitration, i.e. if two ECUs start send-
ing at the same time, a bus collision will be detected (because the electrical signal on the
bus will be corrupted). The CAN controllers will detect the collision and the message with
the smaller valued CAN identifier (=higher priority) will continue, while the other mes-
sage will be stopped and resent later, when the bus is idle again (CSMA/CR Carrier Detect Mul-

tiple Access/Collision Resolution)

Format of a CAN message
Header Payload (data segment) Trailer

0 ... 8 data bytes

CAN Message ID
11 or 29bit
"Address"

Data Length
Code DLC
Number of
data bytes

Cylic
Redundancy

Check
Checksum

Acknowledge
and

End of Frame

(Various control bits in the header and trailer not shown here, message format automatically generated by hardware).
Simple HCS12 CAN driver (CAN bit rate 250 kbit/s, 11bit CAN identifier):

typedef struct // Data structure for CAN messages
{ unsigned long CanId; // CAN identifier

 unsigned char DataLength; // Data length (max. 8)

unsigned char Data[8]; // Data bytes

} CANMESSAGE;

CANMESSAGE sendMessage, receiveMessage; // Variables to send and receive messages

void CanInit(void); // Functions called by user programs
void CanSendMessage(CANMESSAGE *pMsg);

void CanReadMessage(CANMESSAGE *pMsg);

3.7 Miscellaneous Interfaces SPI, I²C, CAN

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.51

void CanInit(void) // CAN controller initialization
{ CAN0CTL0 = CAN0CTL0 | 0x01; // Request initialization

 while ((CAN0CTL1 & 0x01) ==0) {}; // Wait for initialization start acknowledge

 CAN0CTL1 = 0x80; // CAN enable, use OSCCLK (Quartz-Takt)

CAN0BTR0 = 0xC1; // 250 kbit/s @ fOSCCLK = 8MHz (0xC0 bei fOSCCLK=4MHz)

CAN0BTR1 = 0x58;

 CAN0IDAC = 0x20; // Receive CAN messages with any CAN identifier

 CAN0IDAR0 = 0x00;

 CAN0IDMR0 = 0xFF;

 CAN0CTL0 = CAN0CTL0 & 0xFE; // End initialization

 while ((CAN0CTL1 & 0x01) == 1) {}; // Wait for end of initalization acknowledge

 CAN0RFLG_RXF = 1; // Clear receiver flags

CAN0RIER = CAN0RIER | 0x01; // Receive interrupt enable

}

void CanSendMessage(CANMESSAGE *pMsg) // Send a CAN message (typ. pMsg = &sendMessage)
{ volatile unsigned char txBuf;

 while ((CAN0TFLG & 0x07) == 0) {}; // Wait for a free transmit buffer

 txBuf = CAN0TFLG & 0x07; // Select the transmit buffer

 CAN0TBSEL = txBuf;

 txBuf = CAN0TBSEL & 0x07;

 CAN0TXIDR0 = (unsigned char) (pMsg->CanId >> 3); // Copy message to transmit buffer

 CAN0TXIDR1 = (unsigned char) (pMsg->CanId << 5); // -- here: CAN identifier

 CAN0TXIDR2 = 0x00;

 CAN0TXIDR3 = 0x00;

 memcpy (&CAN0TXDSR0, pMsg->Data, pMsg->DataLength);// -- here: CAN data

 CAN0TXDLR = pMsg->DataLength; // Set data length (number of bytes in message, max.8)

 CAN0TXTBPR = CAN0TXIDR0;

 CAN0TFLG = txBuf; // Send the message

}

3.7 Miscellaneous Interfaces SPI, I²C, CAN

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.52

void CanReadMessage(CANMESSAGE *pMsg) // Receive a CAN message (polling or used in ISR)
{ unsigned long temp; (typ. pMsg = &receiveMessage)

 if ((CAN0RFLG & 0x01)==0) // Return at once, if the receive buffer is empty

 { pMsg->DataLength = 0;

 return;

 }

 pMsg->CanId = CAN0RXIDR0; // Copy CAN identifier to CAN data structure

 pMsg->CanId = (pMsg->CanId << 3) + (CAN0RXIDR1 >> 5);

 (void) memcpy(pMsg->Data, &CAN0RXDSR0, CAN0RXDLR); // Copy CAN data bytes to CAN data structure

 pMsg->DataLength = CAN0RXDLR; // Copy CAN data length

 CAN0RFLG = CAN0RFLG | 0x01; // Clear receive flag

}

void interrupt 38 CanReceiveISR(void) // CAN message receive ISR
{ CanReadMessage(&receiveMessage); // Copy CAN message to global variable

 // Do whatever is needed with received data or notify user program by setting an event variable

 // ...

 CAN0RFLG = CAN0RFLG | 0x01; // Clear receive flag

}

Appendix A: Assembler Version of several Sample Programs

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.53

Assembler Version of Program for Run-Time Measurement (CodeWarrior project timer1.mcp)

Configure Timer
(simple counter operation)

Program code
to be measured

Read Counter
startTime = TCNT

Read Counter
stopTime = TCNT

Runtime =
stopTime - startTime

.data: SECTION

startTime DS.W 1 ; TCNT at start of measurement

stopTime DS.W 1 ; TCNT at end of measurement

runTime DS.W 1 ; runTime= stopTime - startTime

.init: SECTION

main:

Entry: . . .

; --- Initialize timer --------------------------------

 BSET TSCR1, #$80 ; Enable timer module

 MOVB #$07, TSCR2 ; Timer clock period 2
7
/24MHz

 MOVW TCNT,startTime ; Save start time

; --- Program code to be measured ----------

 . . .

; --- Compute run time --------------------------------

 MOVW TCNT, stopTime ; Save stop time

 LDD stopTime ; Compute run time

 SUBD startTime

 STD runTime ; Einheit: Timer clock period

Note: Resolution is 1 timer clock period, i.e. 5.3µs measurement range: 1 counter period, i.e. max. 350ms

A smaller clock period will increase measurement resolution, but will reduce the measurement range.

Appendix A: Assembler Version of several Sample Programs

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.54

Assembler Version of Program to Measure the Period of a Pulse Signal

The pulse signal is connected to port T.7 (used as input) and shall have a frequency range of
10Hz … 10kHz. (CodeWarrior project timer3.mcp)

Main program:

Configure timer
(ch. 7 Input-Capture)

. . .

.data: SECTION

signalPeriod: DS.W 1 ; Signal period in TCNT clock

 ; periods

lastTC7: DS.W 1 ; TC7 at last input event

.vect: SECTION ; ROM: Interrupt vector entries

 ORG $FFE0

 DC.W timer7Isr ; Timer channel 7 interrupt

.init: SECTION

main: . . .

; --- Initialize timer --------------------------------

 BSET TSCR1, #$80 ; Enable timer module

 MOVB #$07, TSCR2 ; Timer clock period 2
7
/ 24MHz

 BCLR TIOS, #$80 ; Timer ch. 7: input capture

 MOVB #$40, TCTL3 ; Trigger ch. 7 on rising edge

 BSET TIE, #$80 ; Enable interrupt for ch. 7

loop: BRA loop ; Infinite loop

Appendix A: Assembler Version of several Sample Programs

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.55

lastTC7 = TC7

Reset interrupt flag
for timer ch. 7

ISR für Timer Kanal 7

RTI

Period
= TC7 - lastTC7

ISR for timer ch. 7

INT 15

; --- Interrupt service routine for timer channel 7 ---

timer7Isr:

 LDD TC7 ; Get current TC7

 PSHD

 SUBD lastTC7 ; Compute signalPeriod

 STD signalPeriod ; = current TC7 - last TC7

 PULD ; Save current TC7

 STD lastTC7 ; for next measurement

 BSET TFLG1, #$80 ; Reset interrupt flag of ch. 7

 RTI

current event
stored

TC7 = TCNT

period of input signal
= TC7neu - TC7

next event
stored

TC7neu = TCNTneu

"time" as integer multiple of counter clock period TCNT

input Port T.7

time t
represented

by counter TCNT

Appendix A: Assembler Version of several Sample Programs

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.56

Assembler Version to Drive the Dragon12 Beeper in Output-Compare Mode

A beeper (buzzer) on port T.5 (used as output) shall be driven by a 500Hz pulse signal with
1:1 duty cycle: (CodeWarrior project timer2.mcp)

Main program:

Configure Timer
(Kanal 5 Output-Compare)

. . .

Set First Interrupt Event
 TC5=TCNT+Delay

DELAY: EQU (24000/128) ; Delay 1ms * 24Mhz / 2^7

. . .

.vect: SECTION ; ROM: Interrupt vector entries

 ORG $FFE4

 DC.W timer5Isr ; timer channel 5 interrupt

.init: SECTION

main:. . .

; --- Initialize timer --------------------------------

 BSET TSCR1, #$80 ; Enable timer module

 MOVB #$07, TSCR2 ; Timer clock period 2
7
/ 24MHz

 BSET TIOS, #$20 ; Timer ch.5 as output compare

 MOVB #$04, TCTL1 ; On timer event toggle output

 LDD TCNT ; Set timer for first interrupt

 ADDD #DELAY

 STD TC5

 BSET TIE, #$20 ; Enable interrupt for ch. 5

lp: BRA lp ; Infinite loop

Appendix A: Assembler Version of several Sample Programs

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.57

ISR:

Next Interrupt Event
TC5=TC5+Delay

Reset Interrupt Flag
for Timer Ch. 5

ISR for Timer Ch. 5

INT 13

RTI

; --- Interrupt service routine for timer channel 5

; Output port T.5 is toggled automatically, whenever

; this ISR is called

timer5Isr:

 LDD TC5 ; Set timer for next interrupt

 ADDD #DELAY ;(Don’t use TCNT here to reduce jitter)

 STD TC5

 BSET TFLG1, #$20 ; Reset interrupt flag of ch.5

 RTI

time t
represented

by counter TCNT
current

output event
(interrupt) at

TCNT == TC5

delay = time to next
interrupt

next
output event
(Interrupt) at

TC5neu = TC5 + Delay

"time" as integer multiple of counter clock period TCNT

output Port T.5

By setting the bits in TCTL1 to 0, the output compare mode will trigger an ISR only at a pre-
defined time, but does not change the port pins output signal.

Appendix A: Assembler Version of several Sample Programs

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.58

Assembler Version of Program to measure analog signal
Example: (CodeWarrior project ADCInterrupt.mcp)

• Measure the analog signal on channel 7 (connected to a poti on Dragon12 boards)
• Output the arithmetic mean of 2 measurement values (in binary) to the LEDs on port B

. . .

.data: SECTION ; RAM: Variable data section

value: DS.W 1 ; Measurement value 10bit, right justified

.vect: SECTION ; ROM: Interrupt vector entries

 ORG $FFD2

 DC.W adcIsr ; Interrupt vector for interrupt 22 (ATD0)

.init: SECTION ; ROM: Code section

main:

Entry: . . .

 ; --- Initialize ATD0 ---

 MOVB #%11000010, ATD0CTL2 ; Enable ATD0, enable interrupt

 MOVB #%00010000, ATD0CTL3 ; Sequence of 2 measurements

 MOVB #%00000101, ATD0CTL4 ; 10bit, 2MHz ATD0 clock

 MOVB #%10000111, ATD0CTL5 ; Start first measurement on single channel 7

lp: LDD value ; Show upper 8bits of meas. value on LEDs 7...0

 LSRD

 LSRD

 STAB PORTB

 BRA lp

Appendix A: Assembler Version of several Sample Programs

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.59

; --- Interrupt Service Routine for interrupt 22 -----------------------

adcIsr:

 LDD ATD0DR0 ; Read the result registers,

 ADDD ATD0DR1 ; ... compute average of 2 measurements

 LSRD

 STD value ; ... and store result

BSET ATD0CTL2, #$01 ; Reset interrupt flag (bit 0 in ATD0CTL2)

 MOVB #%10000111, ATD0CTL5 ; Start next measurement on single channel 7

 RTI ; Return from interrupt service routine

Note: Result registers ATD0DR0, … must be read (to automatically reset the CCF flag), before starting the next

conversion.

Instead of starting the A/D conversion via software (by writing to ATD0CTL5), the HCS12 allows other modes to trig-
ger a conversion:

• Automatic Triggering: In this mode (scan mode or free running mode, activated via bit 5=1 in register ATD0CTL5)
software only triggers the first conversion. All following conversions will start automatically after end of the previ-
ous conversion. Result registers can be read any time and always provide the latest result. However, in this mode
sampling is asynchronous, i.e. the user program has no control of the signal sampling period.

• Hardware Triggering: Rather than by software, a conversion will be started by an external hardware signal (a ris-
ing or falling edge of an pulse signal at channel 7 of the ADC).

Appendix B: Clock Generator and Clock Divider Settings

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.60

If the Dragon12 board shall be used without the debugger monitor program, the user pro-
gram must initialize the CPU’s clock generator. After Reset, the CPU’s clock is directly driven
by the quartz crystal @ 4MHz. With the debugger, the monitor program does the initialization.

To set the clock generator to a higher frequency, the following code sequence can be used
(see Clock & Reset Generator Module CRG [3.4]). This code assumes quartz with fOSCCLK=4MHz *1

and sets the PLL for a bus clock of fBUSCLK=24MHz (max. for Dragon12 boards):

 BCLR CLKSEL, #$80 ; Disconnect PLL from CPU (only in case)

 BSET PLLCTL, #$40 ; Turn on PLL

 MOVB #$05,SYNR ; Set PLL multiplier

 MOVB #$00,REFDV ; Set PLL divider (*1 Dragon12 Plus 8MHz: #$01)

 NOP

 NOP

pllWait:BRCLR CRGFLG, #$08, pllWait ; Wait till PLL has locked

 BSET CLKSEL, #$80 ; Connect PLL to CPU

 . . .

fPLLCLK = 2 fOSCCLK
SYNR+1
REFDV+1

 max. 48MHz

fBUSCLK =
fPLLCLK

2

Quartz
Oscillator

OSCCLK
4 MHz *1

Phased Locked
Loop PLL

Clock
Multi

plication
x 12

Clock
Divider

% 2

PLLCLK
48 MHz

BUSCLK
24 MHz

Real Time Timer RTI
Watchdog COP

. . .

CPU-Kernel
will be divided by 2 in CPU

CPUCLK 24 MHz

SYSCLK

Peripherals
e.g. Timer, ADC,

Serial Interface, ...

*1 Note:
 OSCCLK
Dragon12:
 4MHz
Dragon12Plus:
 8MHz

Appendix B: Clock Generator and Clock Divider Settings

ca3c.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3.61

RTI Interrupt

Interrupt period TRTI = 1/fRTI = 29+X·(Y+1) / fOSCCLK. All values in ms @ fOSCCLK = 4MHz
 Y= 0 Y= 1 Y= 2 Y= 3 Y= 4 Y= 5 Y= 6 Y= 7 Y= 8 Y= 9 Y=10 Y=11 Y=12 Y=13 Y=14 Y=15

X= 1: 0.256 0.512 0.768 1.024 1.280 1.536 1.792 2.048 2.304 2.560 2.816 3.072 3.328 3.584 3.840 4.096

X= 2: 0.512 1.024 1.536 2.048 2.560 3.072 3.584 4.096 4.608 5.120 5.632 6.144 6.656 7.168 7.680 8.192

X= 3: 1.024 2.048 3.072 4.096 5.120 6.144 7.168 8.192 9.216 10.240 11.264 12.288 13.312 14.336 15.360 16.384

X= 4: 2.048 4.096 6.144 8.192 10.240 12.288 14.336 16.384 18.432 20.480 22.528 24.576 26.624 28.672 30.720 32.768

X= 5: 4.096 8.192 12.288 16.384 20.480 24.576 28.672 32.768 36.864 40.960 45.056 49.152 53.248 57.344 61.440 65.536

X= 6: 8.192 16.384 24.576 32.768 40.960 49.152 57.344 65.536 73.728 81.920 90.112 98.304 106.496 114.688 122.880 131.072

X= 7: 16.384 32.768 49.152 65.536 81.920 98.304 114.688 131.072 147.456 163.840 180.224 196.608 212.992 229.376 245.760 262.144

ECT Timer @ fBUSCLK = 24MHz

Clock period TTCNT = 1/fTCNT = 2X / fBUSCLK. values in µs

X= 0 X= 1 X= 2 X= 3 X= 4 X= 5 X= 6 X= 7

0.042 0.083 0.167 0.333 0.667 1.333 2.667 5.333

Counter period TP= 216 · TTCNT. values in ms

 X= 0 X= 1 X= 2 X= 3 X= 4 X= 5 X= 6 X= 7

 2.731 5.461 10.923 21.845 43.691 87.381 174.763 349.525

PWM @ fBUSCLK = 24MHz

Clock period of fast clock TA/B = 2X / fBUSCLK,

values in µs

X= 0 X= 1 X= 2 X= 3 X= 4 X= 5 X= 6 X= 7

0.042 0.083 0.167 0.333 0.667 1.333 2.667 5.333

Clock period of slow clock TSA/B = 2 · y · TA/B. values in µs

 X= 0 X= 1 X= 2 X= 3 X= 4 X= 5 X= 6 X= 7

Y= 1: 0.083 0.167 0.333 0.667 1.333 2.667 5.333 10.667

Y= 2: 0.167 0.333 0.667 1.333 2.667 5.333 10.667 21.333

.

Y=255: 21.250 42.500 85.000 170.000 340.000 680.000 1360.000 2720.000

Y=0(=256): 21.333 42.667 85.333 170.667 341.333 682.667 1365.333 2730.667

Serial Interface @ fBUSCLK = 24MHz

Clock divider register SCIxBD = fBUSCLK / (16 · fBit)

fBit= 300bit/s 600bit/s 1,2kbit/s 2,4kbit/s 4,8kbit/s 9,6kbit/s 19,2kbit/s 38,4kbit/s 57,6kbit/s 115,2kbit/s

5000 2500 1250 625 313 156 78 39 26 13

ca3d.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 4.1

Chapter 4

Modular Programming in C and Assembler

4.1 Introduction .. 2

4.2 Inline-Assembler ... 3

4.3 Assembler-Subroutines for C-Programs .. 5

4.4 Local Variables in Subroutines (Stack Frame) .. 9

4.5 Faster and smaller C/C++ for Embedded Systems .. 11

4.1 Introduction to Modular Programming

ca3d.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 4.2

4.1 Introduction

Most professional embedded system programs are written in C, sometimes C++, because
coding in C is faster and programs are more maintainable than assembler code. Nevertheless,
a small part of these programs often will be programmed in other languages, especially in as-
sembler, because

• Algorithms in assembler can use special features of the CPU’s instruction set, which a C-

compiler may not use. Thus assembler code may run faster and/or require less memory.
Less advanced C-compilers, especially those, which support different CPU families, typically
use only those CPU instructions, which are available on most microprocessor types. Special
commands like BIT SET/CLEAR, which may be much faster than AND/OR operations, or in-
structions, which add and multiply in a single operation like HCS12’s EMACS instruction,
may not be used, because they are not available in all types of CPUs.

• Accessing special registers or functions of the microcontroller, for which no equiva-

lent C-operation is available, i.e. there are no C-statements to access status register CCR
directly.

There are two basic solutions for the interaction of C and assembler code:

• Inline-Assembler: Embed assembler instructions into C code.

• Assembler-Module: Assembler subroutines, which are called from C code.

4.2 Inline-Assembler

ca3d.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 4.3

4.2 Inline-Assembler (see [3.13 Chapter High Level Inline Assembler])

Single assembler instructions can be integrated in C-code as asm befehl;

For (small) blocks of assembler instructions within a C function use asm { ...

 }
Beause the C-compiler has to use the same CPU registers as the assembler, some rules en-
sure a smoothless interaction between C and assembler code:

• Variables and constants shall be declared in C. Assembler code can access these varia-

bles by using the variable name. Global C-variables can be used in all assembler instruc-
tions which work with direct addressing. Local C-variables require assembler instructions
which allow register-indirect addressing via SP. The C-compiler will handle the translation

between the C variable name and the CPU’s address mode.

• At the end of each block of assembler instructions, the Stack Pointer must have the same

value as at the start of the block.

• The address of a C-variable is available as @variableName in the assembler block.

• Elements of C-structures and unions can be used, e.g. LDD myStruct.myElement

• Elements of C-arrays can be used, e.g.: int a[20]; asm LDD a:24

accesses element a[12]. Note: The C-array index must be converted into a byte offset in

the assembler instruction, i.e. variableName : C-Index · sizeof(variableType)

Some compilers allow to freely modify all CPU registers in assembler blocks (e.g. HCS12
CodeWarrior). Other compilers (e.g. GNU C) require that CPU registers be saved on the stack
and restored at the end of the assembler block. Check the compiler manual!

4.2 Inline-Assembler

ca3d.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 4.4

Example Program InlineAsm.mcp

• Add two 8bit variables and indicate overflow

char s1, s2; // Global variables

char flag;

void main(void)

{ char r; // Local variable

 . . .

 for(;;)

 { . . .

 s1 = . . . // Input summands from terminal

 s2 = . . .

 . . .

 flag = 0;

 asm

 { LDAA s1 // Compute r = s1 + s2, if overflow occurs, set flag=1

 ADDA s2 // Compute sum

 BVC noov // Check for overflow

 COM flag // ... and set flag if overflow occured

 noov: STAA r // Store result

 }

 sprintf(temp, "\nc =%d + %d = %d %s\n", s1, s2, r, flag ? "Overflow" : "No overflow");

 PutString(temp); // Output result to terminal

 asm SWI; // Exit program (stop simulator or return to monitor program)

 }

}

s1, s2

direct address

r is on the

stack

4.3 C with Assembler Subroutines

ca3d.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 4.5

4.3 Assembler-Subroutines for C-Programs
(see [3.13 Chapter HC12 Backend – Call Protocol and Calling Conventions and Chapter Stack Frames])

To pass parameters to a subroutine and return results, the caller and the callee must use a
common strategy and data types for parameter passing:

 returnDatatype function(C_datatype1 param1, . . ., C_datatypeN paramN)

Several methods exist:

• Use global variables: Advantage: No size limit (other than RAM size). Disadvantage: Re-

cursive subroutine calls (Reentrancy) impossible.

• Use registers: Advantage: Fast. Disadvantage: Limited size/number of registers. This

method is mainly used in stand-alone assembler programs.

• Use the stack: Advantage: Flexible. Disadvantage: Slow, error-prone addressing of pa-

rameters.

Most C-compilers use a mix of parameter passing via registers and via the stack. Unfortu-
nately, these Calling Conventions are not standardized, so each programming language and
each compiler comes up with its own solution. The CodeWarrior HCS12-C-Compiler uses
the following methods:

• The result of a function is returned in a register (D, see table on the next page).

• If a function has a fixed number N of parameters: Parameters 1 to N-1 passed on the

stack „from left to right“ (PASCAL calling convention). However, the last parameter
paramN is passed in a register (D, see table).

4.3 C with Assembler Subroutines

ca3d.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 4.6

Data type of last parameters

Data type of return value
Size in byte CPU-register

char 1 B

int

(Near) Pointer *any_C_datatype
2 D

long 4 X (upper 2Byte), D (lower 2Byte)

Big data structures (arrays, structures, unions) should be passed by reference, rather than by value, i.e. only a

pointer to the data structure is passed (see [3.13])

• The calling program has to remove the parameters from stack again, after the sub-
routine returned. This is done by modifying SP by the number of bytes, which have been

passed as parameters on the stack. I.e.

 param1 → Stack (“Push”) Parameter passing via stack

. . . “left to right” (decrements SP)
paramN-1→ Stack

paramN → Register Last parameter in register

Call the subroutine
Store return value
SP+number of parameter bytes SP “Clean the stack”
 (increment SP)

• Note: If a function has a variable number of parameters, e.g. printf(), sprintf(), …, all parameters will be

passed on the stack „from right to left“, i.e. parameter paramN is pushed first, parameter param1 is pushed last to

the stack before calling the subroutine (C calling convention).

4.3 C with Assembler Subroutines

ca3d.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 4.7

The interface must be defined exactly for compiler, assembler and linker to work:

Interface in calling C-program:

• Function prototype

C_datatype function(C_datatype1 param1, . . ., C_datatypeN paramN);

(Note: The C keyword “extern” is optional, but usage is not recommended.)

• Reference to a global assembler variable (possible, but considered bad style)

extern C_datatype assemblerVariable;

Interface in called assembler-program:

• Export the assembler subroutine to other program modules

 XDEF nameAsmSubroutine // at begin of file

 nameAsmSubroutine: ... // label at begin of subroutine code

• Export a global assembler variable to other program modules

XDEF assemblerVariable // at begin of file

assemblerVariable DS.… … // normal declaration of global assembler variable

• Import of global C-variable

XREF C_variable // at begin of file

4.3 C with Assembler Subroutines

ca3d.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 4.8

Example Program CwithASM.mcp

• Add two 8bit variables and indicate overflow

Main program in C:

char asmCompute(char s1, char s2); // Prototype

char s1, s2, r, flag=0; // Global variables

void main(void)

{ . . .
 r = asmCompute(s1, s2); // Call to assembler function

 . . .

}

Compiled into

LDAB s1 ; s1 Stack
PSHB ;(1)

LDAB s2 ; s2 B
JSR asmCompute ;(2)

LEAS 1,+SP Clean ;(5) stack

STAB r ; Result in R

Subroutine in assembler:

 XDEF asmCompute ; Export of ASM function

 XREF flag ; Import of global C variable

.init: SECTION ; Assembler program code in ROM

asmCompute: LDAA 2, SP ; Get s1 from stack (3)

 ABA ; s1 + s2 (in reg. B) --> reg. A

 BVC noov ; Check for overflow

 COM flag ; ... and set global C variable

 ; (bad programming style!)

noov: TFR A, B ; Move result to B

 RTS ; Return to caller (4)

State of stack:

s1

MSB
Return

Address
LSB

SP before (1)
 after (5)

SP at (3)
before (4)

used

free

4.4 Stack-Frame

ca3d.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 4.9

4.4 Local Variables in Subroutines (Stack Frame)

Local variables are considered good style in higher level languages. Unfortunately, assembler
does not allow to directly declare local variables, but we can use the same concept which C-
compilers use to assign local variables (so-called auto variable) in a so-called Stack-Frame:

Example program LocalVar.mcp : Search for the maximum in an array See code on next page

• State of the stack when the program is running

SP before (1)
 after (7)

SP after (3)
 before (5)

pArray (2 Byte)

Return Address
(2 Byte)

X (2 Byte)

Y (2 Byte)

max (2 Byte) Local Variable
Allocate by LEAS n, -SP
Release by LEAS n, +SP

Saved Registers

Subroutine Parameters

SP before (2)
 before (7)

SP before (3)
 after (5)

SP in Subroutine
between (4) and (5)

SP+8

SP+0

Stack Frame

free

used

4.4 Stack-Frame

ca3d.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 4.10

Some C-compilers expect the subroutine to save and restore registers (but never restore the
return register!). Not required with CodeWarrior’s HCS12 compiler, but good style.

int asmMax (int *pArray, char n); // Prototype of assembler function in C

int val, array[] = { 47, 1600, -4500, 2000, 93, -2010 }; // Array

. . .

val = asmMax(array, 6); // Calling the function (1)

. . . in Assembler: LDD #array, PSHD, LDAB #6, JSR asmMax, STD val, LEAS 2,SP

C-Function

int asmMax

 (int *pArray, char n)

{ int max = -32768;

 for (; n > 0; n--)

 { if (*pArray > max)

 { max = *pArray;

 }

 pArray++;

 }

 return max;

}

Assembler-Function

asmMax: PSHX ; Save registers (2)

 PSHY

 LEAS 2, -SP ; Allocate stack space ... (3)

 MOVW #-32768, 0, SP ;... and initialize local variable (3a)

 LDX 8, SP ; pArray(from stack) X (4)

 ; n is in B

for:

 LDY 0, X ; current array element *pArray Y

 CPY 0, SP ; compare it with max

 BLE next

 STY 0, SP ; if greater -> max

next: LEAX 2, +X ; pArray++

 DECB ; n-- for loop counter and loop condition)

endFor: BNE for ; if n > 0 go to next element

 LDD 0, SP ; return max

 LEAS 2, +SP ; Deallocate space for local variable (5)

 PULY ; Restore registers (6)

 PULX

 RTS ; Return to caller (7)

4.5 Embedded C/C++

ca3d.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 4.11

4.5 Faster and smaller C/C++ for Embedded Systems

Boot sequence of a stand-alone C-program in an embedded system:

Reset

Basic
Hardware Initialization
- Memory map
- Clock generator

Initialization of C Runtime
- Setup the stack
- Copy initalization values
 of global C variables from
 ROM to RAM
- Set "non-initalized" global
 C variables to 0 (zero)

Call main()
as first subroutine

User's Code

More details of the boot process will be discussed in lecture Betriebssysteme [1.5].

Workflow when optimizing a program for size and/or speed

− Define an architecture for the program, which is easy to understand and maintain.
− Select the most efficient algorithms and data types for the problem (e.g. sort algos) −
− Write and debug the program for correctness first (not speed or size!). −
− Turn on the strongest optimization levels of the compiler/linker toolchain. −
− Profile the program, to find out which parts are responsible for program size and speed. −
− Optimize the critical parts using better algos, intrinsics, inline assembler, …

Typical compiler/linker optimizations include

− Variable placement, register usage −
− Code modifications: Loop unrolling or loop-invariant code removal, dead-code removal, …
− “Smart linkers” link only those functions of a library, which are actually used.
− . . .

4.5 Embedded C/C++

ca3d.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 4.12

Compiler and linker optimization

All compiler/linker toolchains can – to a limited extent – optimize programs, but the user
must specify the optimization target. E.g. Visual C/C++

 Visual C/C++ GNU C/C++

 cl /O1 myprogram.cpp

 Optimize for code size

cl /O2 myprogram.cpp

 Optimize for speed

. . .

gcc –Os myprogram.cpp

 Optimize for size

gcc –O myprogam.cpp

 Balance size and speed

. . .

Optimizations, where the compiler may need the software engineer’s help:

• Memory in embedded systems is a limited resource, smaller systems are short of RAM

• Constants should be declared as const ... for the linker to place them in ROM.

• The Stack should be kept small

• Limit the size of local variables per function, no large local arrays

• Don’t use recursive algos, each recursion adds to the stack

• Limit the nesting of subroutines, each subroutine and ISR adds to the stack

• Estimate stack usage in the development phase and monitor stack usage dur-
ing run-time. E.g. periodically check SP, or initalize the stack memory area with a
defined byte pattern and periodically check, which part was overwritten, i.e. used.

4.5 Embedded C/C++

ca3d.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 4.13

• Inline functions

As we have seen in chapter 2.7, calling a subroutine and returning from it is slow, i.e. inef-
ficient for short subroutines. C/C++ allows to declare inline functions:

The programmer writes a normal function, but the compiler decides, whether the function
is implemented as subroutine or the function body simply copied into the calling program.

 Faster code, but code duplicates (memory size), when function is used multiple times.

 HCS12 Codewarrior C Visual C/C++

 #pragma inline

int strcpy(char *dest, char *src)

{ . . .

}

__inline int strcpy(char *dest, char *src)

{ . . .

}

Hinweis: In C++ auch als inline (ohne __...)

• Register Variables

To speed up programs, variables should be held in registers. Better compilers try to opti-
mize register usage automatically. The programmer can help be declaring frequently used
local variables with keyword register, e.g. register int a;

The compiler will try to put this variable into a register, if possible. However, many CPUs
(HCS12, 80x86, …) have only a small number of registers, so the speed-up may be small.

4.5 Embedded C/C++

ca3d.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 4.14

• Volatile Variables

From software’s point of view, hardware registers of peripherals are normal global variables.
For all variables, the compiler assumes that only its own code statements will change the val-
ue of a variable. Because reading memory is slow, a compiler may hold a local copy of a vari-
able in a CPU register. Thus the compiler may not notice, when the value of a hardware regis-
ter changes. E.g. in the following program (left column), the compiler reads timer counter
register TCNT only once. To ensure, that always the most current value of a hardware register

is used, declare hardware registers with keyword volatile:

 short *pTCNT = 0x0044; short volatile *pTCNT = 0x0044;

if (*pTCNT > 100)

 . . .

if (*pTCNT > 200)

 . . .

 LDD TCNT

 CPD #100

 . . .
 CPD #200

 . . .

 LDD TCNT 1st read

 CPD #100

 . . .
 LDD TCNT reread

 CPD #200

 . . .

Compiler intrinsics

Many compilers provide compiler-specific mechanisms to indirectly access low-level features
of the CPU. These so called intrinsics are implemented as C macros with inline assembler:

 HCS12 Codewarrior C Visual C/C++

 EnableInterrupts shortcut for asm CLI _enable()

 DisableInterrupts shortcut for asm SEI
. . .

_disable()

. . .

4.5 Embedded C/C++

ca3d.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 4.15

• Bitwise Operations

Peripherals or low-level communication programs frequently need to modify single bits or
groups of bits, without changing other parts of a hardware register. Microprocessors provide
special instructions, e.g. BSET, BCLR, BRSET, …. But as there are no equivalent C statements,
C programs must use awkward sequences of AND, OR and shift operations.

Example: In PWMPRCLK xB=2D=010B shall be set, other bits must not be changed.

 Bit 7 6 5 4 3 2 1 0

 Register PWMPRCLK 0 x
B
 (3bit) 0 x

A
 (3bit)

Solution in C: #define PWMPRCLK (*(char*) 0x00A3) //Pointer to register

PWMPRCLK = (PWMPRCLK & 0x8F) | 0x20;

The “&” instruction clears bits 6...4. Then the “|” instruction sets bit 5. A non-optimal C com-
piler does the same, i.e. use AND / OR for byte operands, rather than using the more efficient
bit operations BSET / BCLR. The C-programmer must make sure, that constants 0x8F and

0x50 actually change the desired bits. A better solution is to use a C-Bit Field:

 typedef struct { char xA : 3; // Definition of a bit field

 char res3 : 1;

 char xB : 3;

 char res7 : 1;

 } PRCLK;

 #define PWMPRCLK (*(PRCLK*) 0x00A3) // Pointer to register

 PWMPRCLK.xB = 2; // Set xB = 2D

4.5 Embedded C/C++

ca3d.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 4.16

• Compatibility and Portability

Assembler programs are not portable between CPU families which have a different pro-
gramming model (register set, instruction set, and address modes). They must be rewritten.

But low-level C-programs may not be portable, too:

Each CPU-family has a different set of peripherals. Even if they do the same, e.g. digital
I/O, register details are different. This applies even within a CPU family, if it is manufactured
by different suppliers, e.g. ARM CPUs of Samsung and Apple have the same CPU instruction
set, but have proprietary peripherals.

 Hardware-dependent parts of programs should be isolated, so that code which needs to
be modified, when the CPU family is changed, is easily identified HW drivers.

C has - despite ANSI C89/90 or ISO C99 standards – gaps in its specification, i.e. compil-
ers may not be compatible. E.g. the size of common data type int is freely selectable by

the compiler supplier. The C standard suggests the size of an int to be the same as the size

of the major data registers and ALU of the CPU, e.g. 16bit for HCS12, 64bit for modern 80x86
(Intel/AMD) CPUs (Note: But Visual C has 32bit int!!!). In a similar way, data type char is

either signed or unsigned, depending on the compiler implementation.

 Users shall define their own data types in a central header file and never use the original
C data types directly, e.g. typedef unsigned char uint8_t

 typedef signed char int8_t

 typedef unsigned int uint16_t

When using another compiler, only the central header file needs to be adapted.
(C99 compatible compilers provide such a header file named “stdint.h”).

4.5 Embedded C/C++

ca3d.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 4.17

Most compilers provide proprietary language extensions. E.g. HCS12 CodeWarrior C:

The C standard says, to access compiler-specific extensions the programmer shall use key-
word #pragma, e.g. #pragma TRAP_PROC // Defines the following subroutine as ISR

 void myInterruptServiceRoutine(void) { . . . }

CodeWarrior’s proprietary solution requires only a single line of code. However, its non-
standard keyword interrupt may not be understood by other C compilers:

 void interrupt 23 myInterruptServiceRoutine(void) { . . . }

Intrinsics (see above) typically are compiler-specific, i.e. not portable.

Memory addresses can be accessed in a C-standard conformant way via pointers, e.g.

 char *p = 0x0001; //Assign PORTB’s address to pointer

 *p = *p | 0x02; //Set Bit 1 in Port B

or via a macro #define PORTB (*((char *) 0x001))

 PORTB = PORTB | 0x02;

or non-standardized via char PORTB @0x0001; //Assign address to variable
 PORTB = PORTB | 0x02; //Set Bit 1 in Port B

Note: The same compatibility issues occur with other programming languages, e.g.
Android’s Java SDK (Software Developer Kit) is not compatible with Sun/Oracles Java SDK.

4.5 Embedded C/C++

ca3d.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 4.18

• Execution Speed depends on Data Types

Speed in CPU clock cycles, 1 clock = 42ns @ fBUSCLK=24MHz, measured with the HCS12 True Time Simula-
tor, C-code with compiler default optimization, all operands and results are global variables, execution clock
cycles include the arithmetic instruction plus fetching the operands and storing the results from/to memory.

Operation Data type of operands a, b, c

int
(16bit)

long
(32bit)

float
(IEEE 32bit)

double
(IEEE 64bit)

Addition/subtraction c = a + b 9 21 203 500

Multiplication c = a * b 12 83 285 4174

Division a = c / b 21 143 1049 5324

Type conversion from
int a to . . .

 b=(int)a

6

b=(long)a

22

b=(float)a

127

b=(double)a

969

Analysis of the results:

• Add and subtract is fast, multiply is slower (if a CPU does not have a full operand-width

hardware multiplication unit), divide is a disaster

• Data types, which are longer than the size of the ALU (16bit @ HCS12) lead to slow execu-
tion.

• Integer arithmetic is much faster than floating-point arithmetic (if the CPU does not have a
floating-point ALU)

 Use integer arithmetic and smallest-size data types, but check overflow and resolution

 Use efficient algorithms, i.e. algorithms with the fewest number of multiply operations
and no divisions, if possible.

4.5 Embedded C/C++

ca3d.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 4.19

C++

• Has a bad reputation with respect to code size and speed, especially in embedded systems:

− C++ compilers are much more complex than C compilers −
− Some vendors don’t spend much development effort on the C++ features of their

compilers, especially if the compiler is for free and/or has no large user community.

 Use a compiler with a large sales volume or a costly professional compiler
 (e.g. Gnu C Microsoft Visual C++ Intel C++)

• Engineers need to know, which language features do cause overhead and which don’t:

(see e.g. Scott Meyer: Effective C++, Addison-Wesley Publishers)

Nearly no runtime overhead or code bloat, because the following C++ features are re-
solved by the compiler during compile-time:

− C++ class attributes are implemented in the same way as C structure variables,

but with two additional function calls (constructor and destructor), when the class is in-
stantiated. However, same code required when a C structure is initialized.

− C++ class methods are implemented like C functions with one additional pa-

rameter (a this pointer to the associated object)

− Simple inheritance of non-virtual classes, default arguments for functions,
namespaces, overloaded functions and operators, private/protected/public
declarations only specify the scope of variables and methods during compilation.

− C++ classes and structures as function parameters should be passed by (a const)

reference (= pointer), not by value (=copy of the class/structure).

4.5 Embedded C/C++

ca3d.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 4.20

− Dynamic creation of C++ objects via new/delete may lead to the same problems

like dynamic C data structures created via malloc()/free() heap fragmentation,
memory leaks, out of heap memory problems

− C++ uses much stricter rules for data type compatibility and requires many explicit

type casts rather than the more relaxed automatic casts in C. To allow type checks
when linking code modules, compilers “decorate” C++ function and variable names in
the object code with data type information (“name mangling”), e.g. if the programmer
defines a function int fcn(char x)

Visual C++ may decorate the name as ?fcn@@YAHD@Z

where the @...’s indicate the type of the parameter and the return value. Unfortunate-

ly, name mangling is compiler specific and only done in C++. If this function is called
from C or from an assembler module, which do not use mangling, the linker will stop
with an error, because the function names between the C++ and the non-C++ module
do not match. A cross-language compatible C++ function must be declared as

extern “C” int fcn(char x)

to turn off name mangling for this function. Mangling is done in the compile-link phase, it
has no influence on code size or runtime execution speed.

4.5 Embedded C/C++

ca3d.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 4.21

C++ features with negative effect on size or speed (when actually used):

− Inheritance from a virtual base class causes an array of pointers attached to the

class (Virtual Function Table VTABLE) memory size ↑. The table is used to indirect-
ly call the function implementations via the pointers runtime ↑.

− Exception handling with try {} catch {} stores the current state of the program

(CPU registers etc.) on the stack, before the try {} block is executed stack size↑. If

an exception occurs inside the try block, this state is restored to recover from the ex-

ception runtime ↑. As in normal program flow no exception should occur, compilers try
to optimize the try {} path at the expense of the catch {} path.

− “Expensive” library functions: Some standard library functions like printf or

iostream have to take care about any possible parameter combination and thus require

a lot of code. For embedded applications there are simplified versions of the standard li-
braries, e.g. uClibc instead of glibc for GNU compilers.

− Templates may or may not increase code size, depending on how complex and nested

the generated classes are.

− Runtime-Type Identification RTTI (dynamic_cast) allows to call a function with dif-

ferent object types, not known during compile time. This is one of the most esoteric C++
features and thus, compiler implementations may be very inefficient. To be avoided.

ca3e.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 5.1

Chapter 5

Advanced Microprocessor Architectures Intel x86 - ARM

5.1 Overview .. 2

5.2 CPU Support for Operating Systems ... 4

5.3 Intel / AMD 80x86-Architecture .. 9

5.4 ARM-Architecture ... 21

5.1 Overview

ca3e.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 5.2

Microprocessors for General Purpose Computers

CPU type Supplier Type/Data width Comment

• PCs, Workstations, Notebooks

80x86, x86 Intel, AMD CISC, 32/64 bit Brand names: Core, Pentium, Atom, Athlon, Op-
teron, Ryzen, …

Power PC IBM, Freescale RISC, 32/64 bit Till 2005 used in Apple Macintosh computers

• Server (file server, web server, database server)

80x86 See above

Itanium Intel (HP) RISC, 64bit Dead end, development stopped

Sparc Sun RISC, 64bit 2009 Sun bought by Oracle

Power IBM RISC, 64bit Upward compatible to Power PC

• Mainframes for commercial software and large technical computation (vector computers, number crunchers)

Proprietary and
x86-Clusters

IBM, Cray, SGI,
NEC, Fujitsu

 IBM Blue Gene with Power, Cray XT with AMD Op-
teron/Ryzen,…

Nvidia GPU Nvidia Multi-core RISC Massive parallel processing for Machine Learning

Microprocessors for Mobile Devices

• Game Consoles

Power IBM RISC, 64bit Microsoft XBOX 360, Nintendo Wii/Game Cube

Cell IBM

(Sony, Toshiba)

RISC, 64bit

Extreme Multi-Core-CPU

Sony Playstation 3 (combined with Power PC CPU

for management tasks)

x86 Intel, AMD CISC 32/64bit Microsoft XBOX One, Sony Playstation 4

• Smartphones, Tablets

ARM 9, ARM 11

ARM Cortex M

ARM A…

Miscellaneous

(Apple, Samsung,

Qualcomm, …)

RISC, 32bit/64bit Qualcomm, Samsung, Apple, NXP/Freescale ...

with Digital-Signal-Processor DSP and Java exten-

sions

80x86 Intel CISC 32bit/64bit Brand name: Atom for Windows and Android!

5.1 Overview

ca3e.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 5.3

Microcontrollers for Embedded Systems
CPU type Supplier Type/Data width Remark

8051
Miscellaneous

(Origin: Intel)
CISC, 8bit

Licensed and enhanced by many suppliers, e.g.

Philips/NXP, Siemens/Infineon, …

680x

681x NXP+

Freescale/Motorola

CISC, 8bit

CISC, 16bit

CPU families 6805, 6808, 6809

CPU families 6811, 6812, 6816

68xxx CISC, 32bit CPU families 68000 – 68060, 68332, ColdFire, …

MPC55xx RISC, 32bit Embedded Power PC MPC555, 5556, …

PIC 1x

PIC 24

AVR 8

AVR 32

Microchip

(Atmel)

RISC, 8bit Families 12, 14, 16, 18 (= size of CPU address)

RISC, 16bit

RISC, 8bit ATtiny, ATmega

RISC, 32bit

C16x
Infineon (Siemens)

RISC, 16bit
Used in many automotive ECUs

TriCore TC1xxx RISC, 32bit

R8C, M16C

R32C, SuperH

78Kxx

V850

Renesas

(Joint venture of
Hitachi, Mitsubishi

and NEC)

 Many different product families from 4bit to 32bit,
collection of the proprietary CPUs of the mother

companies of the joint venture
CISC, 8/16bit

RISC, 32bit

MIPS
Imagination

(MIPS Technology)
RISC, 32/64bit

Originally for workstations/servers, today used in
routers and settop boxes, e.g. AVM Fritz Box

ARM 7, ARM 9

ARM Cortex M/R
Miscellaneous RISC, 32bit

Licensed to many suppliers, e.g. NXP/Freescale,
Atmel, Philips, STM, Apple (!), Microsoft (!), …

Very broad market, dominated by many „old“ architectures (8051, 68xx developed in the 70s/early 80s),

large range of CPU performance, memory size and peripherals, strongest growth in recent years: ARM

5.2 CPU Support for Operating Systems

ca3e.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 5.4

5.2.1 Power Saving Mechanisms

Purpose: Reduce cooling effort

Increase battery operating time

Idea: Electrical power loss for CMOS logic P ~ U2 · f

But: CMOS transistors switch faster at higher gate voltages

 lower supply voltage U only possible at lower clock frequency f

Measures: Reduce supply voltage U and clock frequency f, if no/low computing per-
formance is required

 Programmable PLL for clock generator

 Programmable voltage supply

 Switching occurs in steps:

• Switch off peripherals

• Switch of (part of) the bus system

• Switch of CPU reactivated periodically by timer interrupts or if re-
quired by an interrupt of a peripheral, i.e. a key press or an incoming
network message

5.2 CPU Support for Operating Systems

ca3e.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 5.5

5.2.2 Protection and Monitoring

Privilege Levels and Privileged Instructions

Purpose: Operating system shall monitor user programs and check their resource us-

age (CPU time, memory)

Idea: Operating system monitoring periodically activated by timer interrupt

Measures: CPU switches between two privilege levels

- Kernel/system mode operating system

- User mode user programs

Critical instructions may only be executed in kernel mode:

• Enable/disable interrupts, i.e. user programs cannot disable interrupts
(and thus cannot stop the operating system monitoring)

• Write (and read) peripheral registers and other management struc-
tures, i.e. the interrupt vector table

• User programs may only call operating system services via a protected
mechanism, i.e. software interrupts

5.2 CPU Support for Operating Systems

ca3e.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 5.6

Run-time Monitoring

Purpose: CPU shall be stopped/restarted, if the CPU “hangs”/runs wild due to a soft-

ware bug

Idea: Monitor, if a certain task is executed correctly and in time periodically

Measures: Hardware timer (Watchdog), which must be written periodically, i.e. by
writing certain data values in a register

If the watchdog is not written correctly, the watchdog will reset the CPU

Detection of Memory Errors

Purpose: Detection of „flipped“ memory bits (reliability problem of large Dynamic

RAMs or Flash ROMs at high temperatures)

Idea: Store redundant parity bits/check sums (CRC), generated by a hardware
unit when writing data and check them when reading. Stop program on er-
ror or automatic error correction (ECC Error Checking and Correction)

Detection of CPU Hardware Errors

Idea: Program executed on two identical CPUs clock by clock (Lockstep CPU)

very costly, used in safety critical systems

Measures: Results of ALU operations etc. monitored by hardware comparators, reset
the CPUs if results do not match

5.2 CPU Support for Operating Systems

ca3e.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 5.7

Memory Protection (Segmentation)

Purpose: A user program shall not access the memory area of the operating system

or of other user programs

Idea: Each program gets its an exclusive memory address range (Segment)

Measures: Hardware monitoring and triggering interrupts, if a program tries to access
a memory address (code or data) in a foreign memory address range

Memory Protection Unit MPU

Address > Segment Start Address
&& Address < Segment End Address

Access type (Read/Write/Execute) ok?
Code or Data

Address
in Program

Address on
CPU Address Bus

Interrupt if
address invalid

Operating System ISR

Example Freescale HCS12X

• 2 operating modes (supervisor and user state)

• 8 memory segments with configurable start and end addresses plus
access rights (read, write and/or execute)

5.2 CPU Support for Operating Systems

ca3e.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 5.8

5.2.3 Memory Extension (Virtual Memory / Paging / Swapping)

Purpose: Programs shall be able to use more memory than physically available or

more than the CPU’s address range allows

Idea: If the memory is larger than the CPU’s address range (i.e. HCS12 DP256
with 256KB memory despite of 16bit addresses only): Switching of memory
blocks (Pages) via programmable address decoders

If more memory required than physically available: Extend the memory by
copying currently unused data/code to the harddisk (Swapping)

Measures: Swapping shall work independent from the user program (transparent):
Conversion of memory addresses via an address translation table (Page
Table) plus operating system interrupt services

Memory Management Unit MMU

Translation Table
Logical Address --> Phys. Address Logical Address

Code or Data
Address

in Program

Physical Address
Address on

CPU Address Bus

Operating System ISR

If no memory space is free: Copy currently unused memory content to hard disks
If logical address currently not in memory: Copy from harddisk to memory

5.3 PC and Server-CPUs Intel/AMD 80x86

ca3e.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 5.9

80x86-Architecture (see http://developer.intel.com)

• Programming Modell for User Programs

Register Set

EAX AXRAX

63 32 16 8 0

R8
. . .

RSP ESP SP

EBX BXRBX

ECX CXRCX

EDX DXRDX

ESI SIRSI

EDI DIRDI

R15

RBP EBP BP

RFLAGS EFLAGS FLAGS

RIP EIP IP

General Purpose
Registers

More
General Purpose

Registers
(new for 64bit CPUs)

Stack
Management

Status Register

Instruction Pointer

64bit Extension 32bit Architecture

16bit Architecture

Floating point registers (FPU, SSE) not shown.

History
• 8bit architecture 8080, 8085 (1974)

Since 1979 upward compatible CPU families
• 16bit architecture 8086, 80186, 80286
• 32bit architecture 80386, 80486, Pentium
• 64bit architecture AMD64,Core EM64, i3/5/7

Several Operating Modes
• Real Mode 16bit DOS (IBM PC 1981)
• Protected Mode 32bit Windows (Win32)
• Compatibility mode 16bit/32bit (Win16)
• 64bit Mode
• Compatibility mode 32/64bit (Win64)

Characteristics
• Small register set (only 6 general purpose 32bit regs.)
• CISC instruction set >> 100 instructions
• Von-Neumann memory model
• Little Endian, byte addressable
• Address- and data size 32bit/64bit
• 2 Address Instructions, 1 register oper-

and and 1 register or memory operand

5.3 PC and Server-CPUs Intel/AMD 80x86

ca3e.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 5.10

Example of 80x86 assembler instructions:

.data

myVar DD 01234567h, 89ABCDEFh

Definition of an array with two 32bit elements

.code

MOV ESI, 4

MOV EAX, 1

ADD EAX, myVar[ESI]

ESI = 4

EAX = 1

EAX = EAX + myVar[ESI] = 1 + 89ABCDEFh

Possible address modes
• register addressing
• immediate addressing
• direct, register-indirect and indexed memory addressing
• Single Instruction Multiple Data (SIMD) instructions with up to 4 x 2 32bit operands
• Floating-point instructions with 32bit, 64bit and 80bit floating-point operands

Orthogonal instruction set
• Each register can be source or destination operand in (nearly) all instructions

Major differences to HCS12 Intel Motorola/Freescale

• Memory order Little Endian Big Endian

• Operand order Destination – Source

i.e. MOV EBX,EAX EBX EAX

Source – Destination

i.e. TFR A,B A B

• Constants MOV EAX, 1 LDAA #1

• Hexadecimal values 01234567h $01234567

5.3 PC and Server-CPUs Intel/AMD 80x86

ca3e.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 5.11

Microarchitecture of current 80x86-CPUs (Core i7-6xxx SkyLake 14nm, i7-7xxx KabyLake 14nm)

4 Instr. Decoders
Translate x86 to

RISC µOP

Level 1
Code Cache 32KB
(Latency 4 clock cycles)

Super-scalar Execution Unit
4 Integer/3 Floating Point-ALUs

1 Load/Store-Unit mit Buffern

Register Set
(with shadow registers

180 int, 168 float registers)

4x256bit

3x256bit

512bit

512bit

256bit

 Data path only,
address and

control signals
not shown

CPU

Core

Execution
Unit

Instruc-
tion
Unit

1 to 4 CPU cores with up to 2 threads per core
clock up to 4 GHz

Level 2
Cache
Code
and
Data

256KB
(Latency
12 clock
cycles)

Memory
Controller

DRAM
Main Memory

2 to 4 Channels

Fast point to point connections
between CPU cores and chip set

Level 3
Cache
Code
and
Data
8MB

(shared
by all cores,

latency
44 clock
cycles)

Quick-Path-
Interconnect

QPI
unidirectional

4 x 20bit

µOP
Cache

Level 1
Data Cache 32KB
(Latency 4 clock cycles)

bi-
direc-
tional
64bit
each

Out-of-Order-Sort
& Pipelines

(224 µOPs, 6 µOPs/clock)

Branch
Pre-

diction
Latency > 100 clocks

CPU internal graphics unit (optional)
& PCI Express interface not shown

The current microarchi-
tecture is much more
complex than the 30 years
old programming model:
• Internal memory in

Harvard structure, ex-
ternal memory still
Von-Neumann

• 80x86-CISC instructions
internally converted to
RISC instructions via 4
instruction decoders

• Superscalar execution
unit (Multiple Issue with
max. 6 parallel RISC in-
structions)

• Medium sized pipeline
with (approx.) 16 stages

• Out-of-Order execution
with a large set of shad-
ow registers

• Dynamic clock switch-
ing

5.3 PC and Server-CPUs Intel/AMD 80x86

ca3e.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 5.12

Chip Photo Intel Core i7

4 CPU cores with common 8 MB level 3 cache and GPU (Graphic Processing Unit) on chip

Source: http://www.anandtech.com/show/7003/the-haswell-review-intel-core-i74770k-i54560k-tested

5.3 PC and Server-CPUs Intel/AMD 80x86

ca3e.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 5.13

Chip Photo AMD Ryzen 3000: Multi-Chip-Design with CPU Core Die and I/O Die (Chiplets), separate GPU

CPU Core Die:

 2 x 4 CPU cores
 2 x 16 MB Level 3 cache
 74 mm² chip size @ 7 nm technology
 3.9 billion transistors

 Detail CPU Core:

 512 kB Level 2 cache,
 32 kB Level 1 Instruction cache
 32 kB Level 1 Data cache
 4 x 64 bit Integer ALUs
 4 x 256 bit Floating point ALUs (ADD/MUL)

 Superscalar out of order execution decoder/scheduler with µOPs

 Pipelining with branch prediction unit

 Register file / operand handling in load/store unit

 Clock, power & temperature monitoring (CPL)

5.3 PC and Server-CPUs Intel/AMD 80x86

ca3e.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 5.14

AMD Ryzen 3000 continued

I/O Die:
 Memory controller, PCIe, SATA, USB
 125mm² chip size @ 12 nm technology
 2.1 billion transistors

Multi-Chip-Design
(Module with heat spreader removed)

Variants with several CPU dies and/or
additional GPU modules (not shown)

Sources:

Christian Hirsch: Grundlagen zu Prozessoren. c’t 11/2020, pg. 140-141, heise.de
https://www.amd.com/de/ryzen

https://www.hardwareluxx.de/index.php/galerie/komponenten/prozessoren/amd-nexthorizone3-mikeclark.html
https://www.tweakpc.de/hardware/tests/cpu/amd_ryzen_7_3700x_ryzen_9_3900x/s02.php

I/O

Die

CPU
Core Die

Ceramic

Interconnect
Module

(~40x40mm²)

5.3 PC and Server-CPUs Intel/AMD 80x86

ca3e.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 5.15

Pipelining: Interleaved execution of instructions (Instruction Level Parallelism ILP 1)

Pro-

gram

Memory

Instr.

Decoder
Data

Memory

Exe-

cution

Unit

Data

Memory

Clock
L
a
t
c
h

L
a
t
c
h

L
a
t
c
h

L
a
t
c
h

Step 1:

Instr. Fetch

Step 2:

Instr. Decode

Step 3:

Operands Fetch

Step 4:

Instr. Execute

Step 5:

Store Result

Program Memory Instruction Decoder Data Memory Execution Unit Data Memory ↓ t

Fetch instruction 1 1

Fetch instruction 2 Decode instruct 1 2

Fetch instruction 3 Decode instruction 2 Fetch operands 1 3

Fetch instruction 4 Decode instruction 3 Fetch operands 2 Execute instruct 1 . . . 4

Fetch instruction 5 Decode instruction 4 Fetch operands 3 Execute instruction 2 Store result 1 5

Fetch instruction 6 Decode instruct 5 Fetch operands 4 Execute instruction 3 Store result 2 6

. …

Precondition: All instructions use all 5 stages add NOP steps if needed
 Slowest stage defines clock period

Latency: Time from Fetch Instruction X to Store Result of X 5 clock periods

Throughput: 1 instruction per clock period (without pipelining: 1 instruction per 5 clock period)

 Theoretical speedup x n with n pipeline stages

5.3 PC and Server-CPUs Intel/AMD 80x86

ca3e.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 5.16

Problems with Pipelines (Pipeline Hazards)

• Data bus conflict

 Example in clock period 5: Fetch instruction 5 – Fetch operands 2 – Store result 1

 Implement separate busses for instructions, operands and results

• Next instruction not always known

Example: Conditional branch instruction, when the immediately preceding instruction

 calculates the condition

 Branch prediction required to avoid pipeline stall/flush

• Data dependency

Example in clock period 5: If result of instruction 1 is operand of instruction 3

 → Bypass the store result cycle and forward result 1 directly to the

 execution unit

Example: If result of instruction 2 is operand of instruction 3

 → Reorder instruction sequence

5.3 PC and Server-CPUs Intel/AMD 80x86

ca3e.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 5.17

Superscalar CPU: Parallel Execution of Instructions
 (Instruction Level Parallelism ILP 2: Multiple Issue)

• Parallel exection of multiple instructions in multiple execution units (ALUs)

Example with 2 ALUs:

Instr.

Decoder

2

Instr.

Decoder

1

ALU 2

ALU 1

Data

Registers

Coor-

dination

Data

bus

for

instructions
F
e
t
c
h
 I
n
s
t
ru

c
t
io

n
s
 1

 a
n
d
 2

In
s
t
r
.

1
In

s
t
r
.

2

Throughput: Theoretical speedup x m with m execution units

Problems

• Data bus conflict same as pipelining

• Data dependency between parallel instructions same as pipelining

 Example: Instructions R1+1→ R2, R3+2→ R4 → no problem with parallel execution

 R1+1→ R2, R2+2→ R4 → 2nd needs result of 1st instruction

 Change order of instruction (Out of Order Execution by compiler or by hardware)

5.3 PC and Server-CPUs Intel/AMD 80x86

ca3e.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 5.18

CPU Protection Methods for Operating Systems

• Privilege levels

- Each program uses one of two privilege levels: Kernel Mode – User Mode. The level assignment
is done via segment registers for code, data and stack and via a segment table

- Operating systems run in Kernel Mode, user programs run in User Mode

- User Mode programs cannot access Kernel Mode data

- User Mode programs can call Kernel Mode functions only via predefined addresses (Call Gates)

• Privileged instructions

- Critical instructions, i.e. enable/disable interrupts, input/output instructions to access periph-
erals or reading/writing registers of the memory management unit, are only allowed in Kernel
Mode.

• Memory management and access Memory Protection MPU and Memory Management MMU

Segment Registers
for Code CS, Data DS

and Stack SS

Segment Table
GDT

Global Descriptor
Table

Memory Space
(Segments)

For each segment: Start Address
Length

Access Rights

. . .

CPU Hardware
- checks address range and access rights for each memory access
- interrupts program (Exception Interrupt), if access invalid

Each program uses
1 Code, 1 Stack and

1 Data Segment

Memory protection by
Segmentation

• Divide memory into var-

iable-length areas
(segments)

• Access rights for each
segment:

 Code – Data
 Kernel – User Mode
 Read–Write–Execute

5.3 PC and Server-CPUs Intel/AMD 80x86

ca3e.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 5.19

Memory Management by Paging

• Each program virtually holds the full 4GB (in 32bit mode) address range
• Its memory range is divided into small, fixed sized areas, i.e. 4KB (Pages)
• All virtual pages are mapped to real physical memory via page tables
• Each program has its own page table which only contains the program’s own pages, i.e. a pro-

gram sees only its own memory, not the pages of other programs
• If a program runs out of physical memory, physical memory pages (of the same or of other pro-

grams), which currently are not used, are copied to the harddisk (Swapping)
• Memory pages have access rights. If a program tries to access a page, for which it does not have

the correct access rights, an Exception Interrupt will be triggered. The operating system ISR then
decides, if the program is stopped, if it gets a new page (i.e. if the stack overflows and is auto-
matically extended) or if the missing page is fetched from the harddisk, if it was swapped before.

Virtual
Address
Space
4GB
for

each
Program

One
Page Table

per
ProgramVirtual

Address

4KB Page

Physical Address Space 4GB

. . .

Physical Memory
Harddisk used as

Memory Extension

Swapping
(Store memory

pages)

Numbers for 80x86 in 32bit Mode

4KB Page

. . .

4KB Page

For each Page: Physical Address
& Access Rights

5.3 PC and Server-CPUs Intel/AMD 80x86

ca3e.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 5.20

Segmentation (Memory Protection) and Paging (Memory Management) are alternatives for memory
management and protection. Segmentation is simpler to implement than paging.

80x86-CPUs implement both, but operating systems typically concentrate on one of the two meth-
ods. E.g. DOS/Windows 3.1 used segmentation, Windows XP/Vista/7/8/10 and Linux use paging.

Outlook: When will PC CPUs run out of memory again?

This happened with 32bit addresses by end of the last decade and with 24bit
addresses beginning of the 1990s.

• Today’s 80x86-CPUs theoretically have 64bit addresses, but only 40 (48) address lines are

available as pins. When will this memory limit be reached?

• Moore’s “Law”:

Number of transistors per chip (= number of bits for ROMs and DRAMs) doubles at
(nearly) constant cost every 2 …3 years

• Starting point:

2014 32 bit addresses 4 GByte (standard for 500€ PCs)

 2016 33 bit 8 GByte
 2018 34 bit 16 GByte
 2020 35 bit 32 GByte

 2030 40 bit 1 TByte

 2046 48 bit 256 TByte

5.4 ARM

ca3e.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 5.21

ARM-32bit-Architecture (see http://www.arm.com)

ARM 7

• Typical 32bit RISC architecture (ARM7/9/11,
Cortex Mx), extended to 64bit (ARM Ax)

• Family of upwards compatible CPUs from simple
microcontrollers without operating system to mi-
croprocessors for mobile computers

• Tiny version ARM 7 TDMI with Von-Neumann-
memory interface, no cache, no MPU or MMU,
simple integer-ALU, short 3 stage pipeline

• Larger versions ARM 9 / 11 / Cortex M / Cortex A
with Harvard memory interface, cache, MPU or
MMU in different versions with integer and float-
ing-point ALUs, longer pipelines with 5 to 8 stag-
es, DSP- and Java extensions

• Advanced Risk Machine (ARM) is a design
house, which develops the CPU architecture and
gives licenses to semiconductor manufacturers.
ARM also provides development tools (compiler,
debugger). The semiconductor supplier adds pro-
prietary peripherals and memory, i.e. ARM CPUs
of different suppliers are not compatible, even
though they have the same programming model.

• Increasing market share, due to:

High computing performance/Watt, small chip
size, reasonable license fees

5.4 ARM

ca3e.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 5.22

Register Set

R0

R1

R12

R13 = SP

R14 = LR

R15 = PC

CPSR

R13

R14

SPSR

. . .

Stack Pointer
Link Register

Instruction Pointer

Status Register

Alternative Registers
for Exception Mode

• Register set with 16 registers, (incl. 3

special purpose registers (PC, LR, SP))
and a status register (CPSR), 64bit ARM
extends register set to 31 regs R0 - R30

• All Register (incl. PC and SP) can be used

as operands in instructions.

• Registers SP and LR will be switched on

interrupts (exceptions). After returning
from the ISR, the CPU will switch back to
the original registers SP and LR again.

Typical RISC Load- and Store Architecture with 3 Address Instructions

• Originally only ~ 40 instructions, all ARM instructions 32bit simple instruction decoder

• Arithmetic-logic instructions use registers or constants only, no memory operands.

• Each arithmetic-logic instruction has 2 operand and 1 result register

Example: ADD R0, R1, R2 R0 = R1 + R2 status bits not modified

• For each instruction the programmer can define, if the status bits (Negative, Zero, Carry,
…) shall be changed or not.

Example: ADDS R0, R1, R2 R0 = R1 + R2 status bits modified

5.4 ARM

ca3e.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 5.23

• For each instruction a condition can be defined. The instruction will only be executed, it the

condition is true, otherwise it is executed as a NOP in many cases conditional branches
(and their problems in pipelined CPUs) can be avoided

Example: ADDMI R0, R1, #4 R0 = R1 + 4 only executed if the negative Bit

 (MI=Minus) was set before

ADDMIS R0, R1, #4 as above, additionally modify the sta-

tus register

Available conditions:

EQ/NE Equal/Not Equal, CS/CC Carry Set/Clear, MI/PL Minus/Positive or zero, VS/VC Over-

flow Set/Clear, GE/GT/LE/LT Greater Equal/Greater/Less Equal/Less (for signed (2s-

complement) numbers), HI/LS Higher/Lower or Same (for unsigned numbers)

• The second operand can be shifted to the left or to the right, i.e. multiplied or divided by
2x, before the instruction is executed. The number of shifts can be specified via a constant
or via another register.

Example: ADD R0, R1, R2 ASL #4 R0 = R1 + (R2<<4) = R1 + R2 · 24

 ADD R0, R1, R2 ASR R3 R0 = R1 + (R2>>R3)= R1 + R2 / 2R3

with ASL/ASR Arithmetic Shift Left/Right (for signed numbers), LSL/LSR Logic Shift

left/right (for unsigned numbers), ROR Rotate to Right

• Modifying the status bits, bit shifting and conditions are also possible with data transport
instructions

Exp.: MOVEQS R0, R1 ASL #4 R0 = R1<<4, if Z bit was set, modify status register

5.4 ARM

ca3e.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 5.24

Addressing Modes to Load and Store Registers from/to Memory

• LDR Rx, <SourceAddress> Load a register from memory Rx, x=0 … 15

• STR Rx, <DestAddress> Store a register to memory Rx, x=0 … 15

Conditions for instructions see above.

Addressing modes for memory source and destination <…address>:

Direct address

 Register-indirect address, e.g. [R0] address in R0

[R0,#4] address is R0 + 4

[R0,R1] address is R0 + R1

[R0,R1,ASL #2] address is R0 + (R1<<2)

Pre-Indexed:

In all previous examples the content of R0 and R1 will not change. Adding a ! (Register

Writeback) to the braces, e.g. [R0, R1]!, R0 will be changed to the newly computed address,

i.e. here R0=R0+R1.

Post-Indexed:

With [] (without !) around the first register only, e.g. [R0],R1,ASL #2, only the first regis-

ter’s content will be used as address, here R0, but the address register R0 nevertheless will

be changed to R0=R0+(R1<<2).

• LDM and STM can load and store multiple registers with a single instruction.

5.4 ARM

ca3e.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 5.25

Subroutine Calls, Link Register LR and Stack

• ARM-CPUs may operate without stack, if subroutines are not nested. A subroutine call BL

subroutine (BL = Branch and Link) stores the return address in register R14=LR. Returning

from a subroutine uses MOV PC,LR, i.e. copying the return address from LR to the instruc-

tion pointer PC. The CPU does not have an explicit Return from Subroutine instruction.

• When subroutine calls are nested, R14=LR is overwritten by the second return address.

Therefore, the first return address must be manually saved and restored by the program-
mer, i.e. a push/pop must be simulated.

• Instructions STR R0,[SP, #-4]! Decrement SP and store R0 on the stack

LDR R0,[SP],#4 Read R0 from stack and increment SP

 simulate the well-known PUSH/POP/PULL stack operations of other microprocessors.

 With STMFD SP!, {R0-R4, R6}

LDMFD SP!, {R0-R4, R6}

A list {…} of registers can be stored/loaded to/from the stack in a single instruction (in-
cluding LR or PC).

• For one-way branches use B address (which actually is implemented by MOV PC,…).

• Like all other instructions, branch instructions may have a condition.

5.4 ARM

ca3e.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 5.26

Protection Methods

• Like 80x86-CPUs ARM-CPUs have privileged and non-privileged operating modes (ARM User

Mode, System Mode and various Exception Modes).

• Switching modes is done by setting bits in the status register or automatically by an inter-
rupt or exception. With each mode change register CSPR will be saved and registers LR and
SP will be switched, i.e. each mode uses its own stack. Mode switching is a priviledged in-
struction.

• Memory Protection MPU and virtual Memory Management MMU are optional.

Advantages/disadvantages of 32bit RISC-instructions vs. 16bit microcontrollers

• 32bit RISC instructions (ARM instruction set) lead to faster, but longer program code com-

pared to typical 8/16bit CISC microcontrollers.

• To reduce the memory size, ARM-CPUs additionally have a set of 16bit instructions (Thumb
instruction set). Thumb code is approx. 30% shorter, but 40% slower than 32bit code.

• Switching between ARM and Thumb instructions is possible when calling subroutines (ARM-
Thumb-Interworking)

• Thumb instructions have several restrictions and are much closer to typical CISC micropro-
cessors:

- Only 2 rather than 3 register operands per instruction (2-address instruction)

- No conditional execution of instructions, code has to use conditional branches

• The ARM Cortex M-family of CPUs, which addresses the classical embedded microcontrol-
ler market, only supports a Thumb(2) instruction set (no classical 32bit ARM instructions).

5.4 ARM

ca3e.docx VZ6.2 Jan 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 5.27

ARM Cortex A-Family: ARM-64bit-Architecture

Cortex A75 (Source: ARM technical reference manual)

• Target: Server market, attack 80x86

 high memory requirements

 Cortex Ax series

• Instruction set AArch64 with new
32bit (!) opcodes, 64bit addresses

and new register model with 31
general-purpose 64bit CPU registers

• AArch64 instruction set not backwards
compatible (new opcodes, modified in-
struction and register set)

• Additional AArch32 mode = classical
ARM-32bit-architecture, mode switch
via software interrupt for backwards
compatibility (aka Intel: Now ARM also
suffers from its own history!)

• User programs use 32bit or 64bit
mode, operating systems must run in
64bit mode

• Multi-Core CPUs with superscalar ar-
chitecture and up to 3 cache levels in
internal Harvard architecture

ca3_adressingmodes.docx VZ1.0 Feb 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 1

Appendix

C/C++ Variables and HCS12 Addressing Modes

Basic CPU Addressing Modes .. 2

HCS12 Register Addressing .. 2

Constants, HCS12 Immediate Addressing .. 2

Memory Organization .. 3

Features of Variables, Pointers and Arrays ... 4

HCS12 Direct Memory Addressing .. 6

Indirect Addressing = “Pointers” .. 7

HCS12 Register-indirect Addressing with Index or Offset 7

HCS12 Register-indirect Addressing with Pre/Post-Inkrement/Decrement 8

HCS12 Memory-indirect Addressing with Index / Offset 8

Numbers and Character Coding .. 10

Sample C and HCS12 assembler code for this appendix can be found in Codewarrior project AsmIntro3.mcp.

ca3_adressingmodes.docx VZ1.0 Feb 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 2

HCS12 CPU Instructions e.g. MOVB var1, var2

 Instruction Operands (max. 2)

 How does the CPU find the operands? Addressing Modes

Basic CPU Addressing Modes

1. Register]

2. Constants (immediate)] HCS12 and other CPUs use variants and

3.1 Memory direct] combinations of these addressing modes

3.2 Memory indirect (“pointer”)]

1. HCS12 Register Addressing implicit CLRA
 explicit TFR D, X

2. Constants, HCS12 Immediate Addressing LDAB #34

Constants are marked by a hash sign #. The constant is part of the instruction, i.e. requires

space in code memory, but no space in data memory. You can use an ASCII character instead

of a number, e.g. #‘A’. The compiler will convert it into the respective ASCII code (= num-

ber). Constants in C/C++ need not be marked varB = 34

ca3_adressingmodes.docx VZ1.0 Feb 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 3

Memory Organization

Example in C HCS12 Memory

 Address
(16 bit)

Value
(memory contents 8 bit)

char var1 = 0x12; 0x1000 0x12 var1

int var2 = 0x3456; 0x1001 MSB 0x34
var2

 0x1002 0x56 LSB

char *p = &var1; 0x1003 0x10
P

 0x1004 0x00

char var3{2] = { 0x70, 0x1005 0x70 var3[0]

 0x71 }; 0x1006 0x71 var3[1]

int var4{2] = { 0x8008, 0x1007 0x80
“var4[0]”

 0x1008 0x08

 0x1009 0x81
“var4[1]”

 0x8118 }; 0x100A 0x18

char var5 = 0x23; 0x100B 0x23 var5

ca3_adressingmodes.docx VZ1.0 Feb 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 4

Features of Variables, Pointers and Arrays Example

 Scalar variables have a value var2 = 0x3435

 a size in memory 2 byte (1, 2 or 4 byte depends on data type)

 an address in C &var2 = 0x1001

 HCS12 #var2 = 0x1001

 address is the address of the first
byte in big endian sequence

 Pointer variables

pointer variable =
 variable which’s value

 is an address

have a value p = 0x1000

a size in memory 2 byte (always, data type does not matter!)

an address C &p = 0x1003

 HCS12 #p = 0x1003

point to another variable

*p = *0x1000 = 0x12

value of a pointer variable is the
address of the other variable

Note: “Pointer arithmetic” allows access across variable

borders

p + 11 = 0x1000 + 0x0B = &var5

&var1 + 0x0B = 0x100B = &var5

ca3_adressingmodes.docx VZ1.0 Feb 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 5

 Arrays

have elements with values
(like variables)

var3[0] = 0x70

var3[1] = 0x71

C arrays are indexed per
element
(element size does not matter)

var4[1] = 0x8118

HCS12 arrays are indexed
per memory byte
(element size is important)

var4,X = 0x81 if X = 2

var4,X = 0x18 if X = 3

HCS12 index = C index · element size

Array elements have ad-
dresses

&var3[1] = 0x1006

The array name can be
used instead of the ad-
dress of its first element

var3 = &var3[0] = 0x1005

I prefer &var3 instead of var3, but in ANSI
C strict this syntax is an error.

The array name is not a pointer variable,
but a constant address!

 Often a pointer variable is
used to access array ele-
ments. The pointer may
be indexed.

p = &var3[0] = 0x1005

*p = *0x1005 = 0x70

*(p+1) = p[1] = 0x71

ca3_adressingmodes.docx VZ1.0 Feb 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 6

3.1 HCS12 Direct Memory Addressing LDAB var1

 in C/C++: varB = var1

The instructions read the VALUE of variable var1 (not the address).

When the variable is declared, the compiler will reserve space for the variable in memory.

When the variable is used, the 16bit ADDRESS (of the first byte) of the variable will be part
of the instruction. Addresses are fixed at compile time and don’t change at runtime!

The CPU has no idea of data types and does not respect borders between variables.

How does the CPU know, how many bytes to read or write?

 Either the instruction specifies it … MOVW p, var1

copies 2 bytes from p into var1 and the first byte of var2

 … or the CPU uses the size of the register operand LDD var1

NOTE: copies 2 bytes (var1 and the first byte of var2) into register D

LDX #$100B X = 0x100B Numbers marked with # are constants

LDAB $100B B = *0x100B = 0x23 Numbers without # instead of a variable name are
direct addresses

LDAB var5 B = var5 = 0x23 If we want the value of a variable, we use the
name of the variable

LDX #var5 X = &var5 = 0x100B If we want the address of a variable, we mark it

ca3_adressingmodes.docx VZ1.0 Feb 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 7

3.2 Indirect Addressing = “Pointers”

Indirect addressing is needed, when the operand address is variable and thus must be calcu-

lated by the CPU during runtime and not by the compiler during compile time. The HCS12

supports a number of variants of indirect addressing:

 HCS12 Register-indirect Addressing with Index or Offset (single indirection)

 Read (write) an array element with a variable index LDAB var3, X

 name of the array index in X or Y

 in C/C++: varB = var3[X] =*(&var3+X)

The effective address of the array operand (=”pointer” to the operand) is var3 + X = &var3[0] + X

 Note: If the array index is constant, rather than loading the constant into X or Y

 use direct addressing, which is faster LDAB var3+1

 Read (write) a variable in memory with a pointer in register X or Y and an offset

 assume X = &var3[0] LDAB 1, X

 in C/C++: varB = *(X+1) =*(&var3+1)

The result is exactly the same as LDAB var3, X above when X=1

 If the offset is variable rather than constant, use LDAB D, X

 in C/C++: varB = *(X+D)

ca3_adressingmodes.docx VZ1.0 Feb 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 8

 HCS12 Register-indirect Addressing with Pre/Post-Inkrement/Decrement

Read (write) a variable in memory with a pointer in register X or Y and increment or dec-

rement the pointer before or after using it LDAB 3, X+

X+ post-increment, +X pre-increment, X post-decrement, X pre-decrement

 in C/C++: varB = *X

 X = X + 3

 HCS12 Memory-indirect Addressing with Index / Offset (single indirection)

Read (write) a variable in memory using two pointers. The first pointer is in register X or Y

and points to a second pointer in memory. The pointer in memory then points to the varia-

ble: LDX #$1003

 LDAB [0, X]

 in C/C++: varB = *(*(X+0)) = 0x12

Assuming X=0x1003, the first pointer 0, X points to memory address 0x1003. The value

at this address is used as a second pointer […], pointing to memory address 0x1000,

from where the CPU finally fetches the data 0x12 to load into register B.

Note: Memory-indirect can be avoided by using register-indirect twice, e.g. LDAB [0,X] LDX 0,X

 LDAB 0,X

ca3_adressingmodes.docx VZ1.0 Feb 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 9

The constant offset/index refers to X, i.e. to the first pointer. The pointer in memory can be

interpreted as an array of pointers, i.e.

 Address
(16 bit)

Value
(memory contents 8 bit)

char var1 = 0x12; 0x1000 0x12 var1

.

char var5 = 0x23; 0x100B 0x23 var5

char *pP{2] = { &var1, 0x100C 0x10
“pP[0]”

 0x100D 0x00

 &var5 }; 0x100E 0x10
“pP[1]”

 0x100F 0x0B

Example: LDX #pP

LDAB [2, X]

X = &pP[0] = 0x100C

B = *(*(X+2))

 = *(*0x100E) = *0x100B = 0x23

In C/C++: varB = *pP[1] Note: C index is element-wise, while

HCS12 index is byte-wise

Again memory-indirect can be substituted by LDX 2, X

 LDAB 0, X

ca3_adressingmodes.docx VZ1.0 Feb 21 © Prof. J. Friedrich, W. Zimmermann, Hochschule Esslingen Computer Architecture 10

Numbers and Character Coding

 The computer codes integer numbers in a binary format with a length of 8, 16, 32, … bit,

in (HCS12) C char, int, long, …

 For real numbers 32bit or 64 bit IEEE 754 format is used (in C: float, double).

 To store characters computers typically use 8 bit ASCII coding, in C char. Note: char is

also used for 8 bit integer numbers.

 Text with more than one character is stored in C in char arrays in ASCIIZ format, i.e.

ASCII coding plus a 0 byte to mark the end of the text.

 C++ and other programming languages use a special format called string, which is a

wrapper for these arrays, which simplifies the handling of non-ASCII character sets like

16 bit Unicode or variable length UTF-8 text.

For the CPU numbers or text is a sequence of bits with known length which can be handled
via the CPU’s binary operations. To interface with humans, these bit sequences need to be
converted to and from human readable. In C the conversion for variables is handled via the
format strings of input/output functions like printf(), scanf() or explicit conversion func-

tions like atoi(), itoa(), … or via the compiler (for constants). Keyboard input or dis-

play/printer output always uses TEXT format, i.e. ASCII characters, even it it looks like a
number!

